Electron–phonon heat exchange in quasi-two-dimensional nanolayers

Regular Article


We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film’s surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron–phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (T e for the electrons temperature and T ph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, T e ) or (d, T ph ), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find PT e 3.5 T ph 3.5 . From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.


Mesoscopic and Nanoscale Systems 


  1. 1.
    F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994) ADSCrossRefGoogle Scholar
  2. 2.
    J.K. Viljas, T.T. Heikkilä, Phys. Rev. B 81, 245404 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    S. Cojocaru, D.V. Anghel, Phys. Rev. B 93, 115405 (2016) ADSCrossRefGoogle Scholar
  4. 4.
    F.W.J. Hekking, A.O. Niskanen, J.P. Pekola, Phys. Rev. B 77, 033401 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    D.V. Anghel, S. Cojocaru, Solid State Commun. 227, 56 (2016) ADSCrossRefGoogle Scholar
  6. 6.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    D.V. Anghel, A. Luukanen, J.P. Pekola, Appl. Phys. Lett. 78, 556 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    D.V. Anghel, J.P. Pekola, J. Low Temp. Phys. 123, 197 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    M.M. Leivo, J.P. Pekola, Appl. Phys. Lett. 72, 1305 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    D.V. Anghel, J.P. Pekola, M.M. Leivo, J.K. Suoknuuti, M. Manninen, Phys. Rev. Lett. 81, 2958 (1998) ADSCrossRefGoogle Scholar
  11. 11.
    T. Kühn, D.V. Anghel, J.P. Pekola, M. Manninen, Y.M. Galperin, Phys. Rev. B 70, 125425 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    D.V. Anghel, T. Kühn, J. Phys. A: Math. Theor. 40, 10429 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Auld, Acoustic fields and waves in solids, 2nd edn. (Robert E. Krieger Publishing Company, Krieger Drive, Malabar, Florida 32950, 1990) Google Scholar
  14. 14.
    J. Ziman, Electrons and phonons (Harcourt College Publishers, New York, 1976) Google Scholar
  15. 15.
    L. Lewin, Dilogarithms and associated functions (MacDonald, London, 1958) Google Scholar
  16. 16.
    M.H. Lee, Acta Phys. Pol. B 40, 1279 (2009) ADSGoogle Scholar
  17. 17.
    M.H. Lee, Phys. Rev. E 55, 1518 (1997) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Horia Hulubei National Institute for Physics and Nuclear EngineeringMăgureleRomania

Personalised recommendations