Topological phase in 1D topological Kondo insulator: Z2 topological insulator, Haldane-like phase and Kondo breakdown

Regular Article


We have simulated a half-filled 1Dp-wave periodic Anderson model with numerically exact projector quantum Monte Carlo technique, and the system is indeed located in the Haldane-like state as detected in previous works on the p-wave Kondo lattice model, though the soluble non-interacting limit corresponds to the conventional Z2 topological insulator. The site-resolved magnetization in an open boundary system and strange correlator for the periodic boundary have been used to identify the mentioned topological states. Interestingly, the edge magnetization in the Haldane-like state is not saturated to unit magnetic moment due to the intrinsic charge fluctuation in our periodic Anderson-like model, which is beyond the description of the Kondo lattice-like model in existing literature. The finding here underlies the correlation driven topological state in this prototypical interacting topological state of matter and naive use of non-interacting picture should be taken care. Moreover, no trace of the surface Kondo breakdown at zero temperature is observed and it is suspected that frustration-like interaction may be crucial in inducing such radical destruction of Kondo screening. The findings here may be relevant to our understanding of interacting topological materials like topological Kondo insulator candidate SmB6.


Solid State and Materials 


  1. 1.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hohenadler, F.F. Assaad, J. Phys.: Condens. Matter 25, 143201 (2013)ADSGoogle Scholar
  4. 4.
    A. Bansil, H. Lin, T. Das, Rev. Mod. Phys. 88, 021004 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    E. Witten, Rev. Mod. Phys. 88, 035001 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Senthil, Annu. Rev. Condens. Matter Phys. 6, 299 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    C.-X. Liu, S.-C. Zhang, X.-L. Qi, Annu. Rev. Condens. Matter Phys. 7, 301 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M. Dzero, J. Xia, V. Galitski, P. Coleman, Annu. Rev. Condens. Matter Phys. 7, 249 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    M. Dzero, K. Sun, V. Galitski, P. Coleman, Phys. Rev. Lett. 104, 106408 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z.R. Ye, M. Xu, Q.Q. Ge, S.Y. Tan, X.H. Niu, M. Xia, B.P. Xie, Y.F. Li, X.H. Chen, H.H. Wen, D.L. Feng, Nat. Commun. 4, 3010 (2013)ADSGoogle Scholar
  12. 12.
    M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida, D.J. Kim, C. Liu, I. Belopolski, Y.J. Jo, T.-R. Chang, H.-T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, M.Z. Hasan, Nat. Commun. 4, 2991 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Xu, X. Shi, P.K. Biswas, C.E. Matt, R.S. Dhaka, Y. Huang, N.C. Plumb, M. Radovi, J.H. Dil, E. Pomjakushina, K. Conder, A. Amato, Z. Salman, D. McK. Paul, J. Mesot, H. Ding, M. Shi, Phys. Rev. B 88, 121102 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    E. Frantzeskakis, N. de Jong, B. Zwartsenberg, Y.K. Huang, Y. Pan, X. Zhang, J.X. Zhang, F.X. Zhang, L.H. Bao, O. Tegus, A. Varykhalov, A. de Visser, M.S. Golden, Phys. Rev. X 3, 041024 (2013)Google Scholar
  15. 15.
    N. Xu, P.K. Biswas, J.H. Dil, R.S. Dhaka, G. Landolt, S. Muff, C.E. Matt, X. Shi, N.C. Plumb, M. Radovi, E. Pomjakushina, K. Conder, A. Amato, S.V. Borisenko, R. Yu, H.-M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding, M. Shi, Nat. Commun. 5, 4566 (2014)ADSGoogle Scholar
  16. 16.
    G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y.S. Eo, D.-J. Kim, C. Kurdak, J.W. Allen, K. Sun, X.H. Chen, Y.Y. Wang, Z. Fisk, L. Li, Science 346, 1208 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    B.S. Tan, Y.-T. Hsu, B. Zeng, M.C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M.D. Johannes, T.P. Murphy, J.-H. Park, L. Balicas, G.G. Lonzarich, G. Balakrishnan, S.E. Sebastian, Science 349, 287 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    V. Alexandrov, P. Coleman, O. Erten, Phys. Rev. Lett. 114, 177202 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    A. Thomson, S. Sachdev, Phys. Rev. B 93, 125103 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    O. Erten, P. Ghaemi, P. Coleman, Phys. Rev. Lett. 116, 046403 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    G. Baskaran, Majorana Fermi Sea in Insulating SmB6: A Proposal and a Theory of Quantum Oscillations in Kondo Insulators, arXiv:1507.03477
  22. 22.
    V. Alexandrov, P. Coleman, Phys. Rev. B 90, 115147 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A. M. Lobos, A.O. Dobry, V. Galitski, Phys. Rev. X 5, 021017 (2015)Google Scholar
  24. 24.
    A. Mezio, A.M. Lobos, A.O. Dobry, C.J. Gazza, Phys. Rev. B 92, 205128 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    I. Hagymasi, O. Legeza, Phys. Rev. B 93, 165104 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    V. Alexandrov, M. Dzero, P. Coleman, Phys. Rev. Lett. 111, 226403 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    J.N. Chazalviel, M. Campagna, G.K. Wertheim, P.H. Schmidt, Phys. Rev. B 14, 4586 (1976)ADSCrossRefGoogle Scholar
  28. 28.
    P. Coleman, Introduction to Many Body Physics (Cambridge University Press, 2015), Chaps. 15–18Google Scholar
  29. 29.
    F. Assaad, H. Evertz, in Computational Many-Particle Physics, edited by H. Fehske, R. Schneider, A. Weiße, (Springer, Berlin, 2008), Lecture Notes in Physics, Vol. 739, pp. 277–356Google Scholar
  30. 30.
    M. Legner, A. Ruegg, M. Sigrist, Phys. Rev. B 89, 085110 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    Y.-Z. You, Z. Bi, A. Rasmussen, K. Slagle, C. Xu, Phys. Rev. Lett. 112, 247202 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    K. Wierschem, P. Sengupta, Phys. Rev. B 90, 115157 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    H.-Q. Wu, Y.-Y. He, Y.-Z. You, C. Xu, Z.Y. Meng, Z.-Y. Lu, Phys. Rev. B 92, 165123 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Y.-Y. He, H.-Q. Wu, Y.-Z. You, C. Xu, Z.Y. Meng, Z.-Y. Lu, Phys. Rev. B 93, 115150 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    H.L. Nourse, I.P. McCulloch, C. Janani, B.J. Powell, Phys. Rev. B 94, 214418 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    D. Wang, S.-L. Xu, Y. Wang, C.-J. Wu, Phys. Rev. B 91, 115118 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    E. Tang, X.-G. Wen, Phys. Rev. Lett. 109, 096403 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    T. Paiva, G. Esirgen, R.T. Scalettar, C. Huscroft, A.K. McMahan, Phys. Rev. B 68, 195111 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    S. Doniach, Physica B+C 91, 231 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Zhong, K. Liu, Y.-F. Wang, Y.-Q. Wang, H.-G. Luo, Eur. Phys. J. B 86, 195 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Zhong, Y.-F. Wang, H.-T. Lu, H.-G. Luo, Physica B 446, 22 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    M. Nakagawa, N. Kawakami, Phys. Rev. Lett. 115, 165303 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Zhong, Y. Liu, H.-G. Luo, Front. Phys. 12, 127502 (2017)CrossRefGoogle Scholar
  45. 45.
    R. Blankenbecler, D.J. Scalapino, R.L. Sugar, Phys. Rev. D 24, 2278 (1981)ADSCrossRefGoogle Scholar
  46. 46.
    J.E. Hirsch, Phys. Rev. B 31, 4403 (1985)ADSCrossRefGoogle Scholar
  47. 47.
    R.R. dos Santo, Brazilian J. Phys. 33, 1 (2003)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou UniversityLanzhouP.R. China
  2. 2.LCP, Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  3. 3.Software Center for High Performance Numerical Simulation, China Academy of Engineering PhysicsBeijingP.R. China
  4. 4.Beijing Computational Science Research CenterBeijingP.R. China

Personalised recommendations