Synthesis of gold nanostars with fractal structure: application in surface-enhanced Raman scattering

Regular Article
  • 26 Downloads

Abstract

Multi-branched gold nanostars with fractal feature were synthesized using the Triton X-100 participant seed-growth method. By increasing the amount of ascorbic acid, the branch length of gold nanostars could be greatly increased. It has been interesting to find that the secondary growth of new branches takes place from the elementary structure when the aspect ratio of the branches is greater than 8.0 and the corresponding plasmon absorption wavelength is greater than 900 nm. Raman activity of the gold nanostar films has been investigated by using the 4-mercaptobenzoic acid (4-MBA) as Raman active probe. Experimental results show that the surface-enhanced Raman scattering (SERS) ability of the gold nanostars could be efficiently improved when the fractal structure appears. The physical mechanism has been attributed to the intense increased secondary branch number and the increased “hot spots”. These unique multi-branched gold nanostars with fractal feature and great SERS activity should have great potential in sensing applications.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    W.X. Wang, Y.C. Yan, N. Zhou, H. Zhang, D.S. Li, D.R. Yang, Nanoscale 8, 3704 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    N. Halas, S. Lal, W. Chang, S. Link, P. Nordlander, Chem. Rev. 111, 3913 (2011) CrossRefGoogle Scholar
  3. 3.
    J.C.S. Costa, R.A. Ando, A.C. Sant’ana, L.M. Rossi, P.S. Santos, M.L.A. Temperini, P. Corio, Phys. Chem. Chem. Phys. 11, 7491 (2009) CrossRefGoogle Scholar
  4. 4.
    S.J. Ding, J. Zhu, Appl. Surf. Sci. 357, 487 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    J.F. Bryche, A. Tsigara, B. Bélier, M.L. de la Chapelle, M. Canva, B. Bartenlian, G. Barbillon, Sens. Actuators B: Chem. 228, 31 (2016) CrossRefGoogle Scholar
  6. 6.
    X. Zhang, L. Guo, J. Luo, X. Zhao, T. Wang, Y. Li, Y. Fu, ACS Appl. Mater. Interfaces 8, 9889 (2016) CrossRefGoogle Scholar
  7. 7.
    H. Guo, F. Ruan, L. Lu, J. Hu, J. Pan, Z. Yang, B. Ren, J. Phys. Chem. C 113, 10459 (2009) CrossRefGoogle Scholar
  8. 8.
    G. Kawamura, Y. Yang, M. Nogami, Appl. Phys. Lett. 90, 261908 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Li, H.Q. An, J. Zhu, J.W. Zhao, Appl. Surf. Sci. 347, 856 (2015) ADSCrossRefGoogle Scholar
  10. 10.
    M.C. Giordano, A. Foti, E. Messina, P.G. Gucciardi, D. Comoretto, F.B. de Mongeot, ACS Appl. Mater. Interfaces 8, 6629 (2016) CrossRefGoogle Scholar
  11. 11.
    Y. Lu, G.L. Liu, J. Kim, Y.X. Mejia, L.P. Lee, Nano Lett. 5, 119 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    X. Zhou, R. Li, Z. Li, J. Liu, Z. Gu, G. Wang, RSC Adv. 4, 15363 (2014) CrossRefGoogle Scholar
  13. 13.
    P.S. Kumar, I. Pastoriza-Santos, B. Rodríguez-González, F.J. García de Abajo, L.M. Liz-Marzán, Nanotechnology 19, 015606 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    C.L. Nehl, H. Liao, J.H. Hafner, Nano Lett. 6, 683 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    K. Sau, C.J. Murphy, J. Am. Chem. Soc. 126, 8648 (2004) CrossRefGoogle Scholar
  16. 16.
    X. Zou, E. Ying, S. Dong, Nanotechnology 17, 4758 (2006) CrossRefGoogle Scholar
  17. 17.
    C. Hrelescu, T.K. Sau, A.L. Rogach, F. Jäckel, J. Feldmann, Appl. Phys. Lett. 94, 153113 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    Y. You, N.A. Purnawirman, H. Hu, J. Kasim, H. Yang, C. Du, T. Yu, Z. Shen, J. Raman Spectrosc. 41, 1156 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    C.G. Khoury, T. Vo-Dinh, J. Phys. Chem. C 112, 18849 (2008) CrossRefGoogle Scholar
  20. 20.
    L. Vigderman, E.R. Zubarev, Langmuir 28, 9034 (2012) CrossRefGoogle Scholar
  21. 21.
    G. Jalani, M. Cerruti, Nanoscale 7, 9990 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    M. Sajitha, A. Vindhyasarumi, A. Gopi, K. Yoosaf, RSC Adv. 5, 98318 (2015) CrossRefGoogle Scholar
  23. 23.
    B. Khlebtsov, E. Panfilova, V. Khanadeev, N. Khlebtsov, J. Nanopart. Res. 16, 2623 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    H.Z. Zou, G.H. Ren, M.Y. Shang, W.Q. Wang, Mater. Chem. Phys. 176, 115 (2016) CrossRefGoogle Scholar
  25. 25.
    H.M. Song, L. Deng, N.M. Khashab, Nanoscale 5, 4321 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    M. Chirumamilla, A. Gopalakrishnan, A. Toma, R.P. Zaccaria, R. Krahne, Nanotechnology 25, 235303 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    S. Saverot, X. Geng, W. Leng, P.J. Vikesland, T.Z. Grove, L.R. Bickford, RSC Adv. 6, 29669 (2016) CrossRefGoogle Scholar
  28. 28.
    P. Ndokoye, X. Lia, Q. Zhao, T. Li, M.O. Tade, S. Liu, J. Colloid Interface Sci. 462, 341 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    H. Yuan, A.M. Fales, C.G. Khoury, J. Liu, T. Vo-Dinh, J. Raman Spectrosc. 44, 234 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    Q. Su, X. Ma, J. Dong, C. Jiang, W. Qian, ACS Appl. Mater. Interfaces 3, 1873 (2011) CrossRefGoogle Scholar
  31. 31.
    W. Jia, J. Li, L. Jiang, ACS Appl. Mater. Interfaces 5, 6886 (2013) CrossRefGoogle Scholar
  32. 32.
    J. Zhu, J. Gao, J.J. Li, J.W. Zhao, Appl. Surf. Sci. 322, 136 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    L.P. Mei, W.J. Yin, J.J. Feng, Z.Y. Lv, Y.S. Han, Y. Guo, A.J. Wang, Electrochim. Acta 160, 235 (2015) CrossRefGoogle Scholar
  34. 34.
    L.X. Chen, J.J. Lv, A.J. Wang, H. Huang, J.J. Feng, Sens. Actuators B: Chem. 222, 937 (2016) CrossRefGoogle Scholar
  35. 35.
    J.J. Feng, L. Liu, H. Huang, A.J. Wang, Sens. Actuators B: Chem. 238, 91 (2017) CrossRefGoogle Scholar
  36. 36.
    A.J. Wang, J.J. Lv, D.L. Zhou, X. Weng, S.F. Qin, J.J. Feng, New J. Chem. 38, 3395 (2014) CrossRefGoogle Scholar
  37. 37.
    P. Pallavicini, A. Donà, A. Casu, G. Chirico, M. Collini, G. Dacarro, A. Falqui, C. Milanese, L. Sironic, A. Taglietti, Chem. Commun. 49, 6265 (2013) CrossRefGoogle Scholar
  38. 38.
    A. Shiohara, S.M. Novikov, D.M. Solís, J.M. Taboada, F. Obelleiro, L.M. Liz-Marzan, J. Phys. Chem. C 119, 10836 (2015) CrossRefGoogle Scholar
  39. 39.
    D. Lee, S. Yoon, J. Phys. Chem. C 119, 7873 (2015) CrossRefGoogle Scholar
  40. 40.
    X.D. Tian, S. Chen, Y.J. Zhang, J.C. Dong, R. Panneerselvam, Y. Zhang, Z.L. Yang, J.F. Li, Z.Q. Tian, Nanoscale 8, 2951 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    P. Matteini, M. Cottat, F. Tavanti, E. Panfilova, M. Scuderi, G. Nicotra, M.C. Menziani, N. Khlebtsov, M. de Angelis, R. Pini, ACS Nano 11, 918 (2017) CrossRefGoogle Scholar
  42. 42.
    S. Abalde-Cela, S. Ho, B. Rodríguez-González, M.A. Correa-Duarte, R.A. Álvarez-Puebla, L.M. Liz-Marzán, N.A. Kotov, Angew. Chem. Int. Ed. 48, 5326 (2009) CrossRefGoogle Scholar
  43. 43.
    C.D. Andrea, A. Irrera, B. Fazio, A. Foti, E. Messina, O.M. Maragò, S. Kessentini, P. Artoni, C. David, P.G. Gucciardi, J. Opt. 17, 114016 (2015) CrossRefGoogle Scholar
  44. 44.
    A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109, 11279 (2005) CrossRefGoogle Scholar
  45. 45.
    V. Weber, A. Feis, C. Gellini, R. Pilot, P.R. Salvi, R. Signorini, Phys. Chem. Chem. Phys. 17, 21190 (2015) CrossRefGoogle Scholar
  46. 46.
    B. Fazio, P. Artoni, M.A. Iati, C. D’Andrea, M.J. Lo Faro, S. Del Sorbo, S. Pirotta, P.G. Gucciardi, P. Musumeci, C.S. Vasi, R. Saija, M. Galli, F. Priolo, A. Irrera, Light Sci. Appl. 5, e16062 (2016) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jian Zhu
    • 1
  • Mei-Jin Liu
    • 1
  • Jian-Jun Li
    • 1
  • Jun-Wu Zhao
    • 1
  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong UniversityXi’anP.R. China

Personalised recommendations