Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene

  • Iyor Yu. Sagalianov
  • Taras M. Radchenko
  • Yuriy I. Prylutskyy
  • Valentyn A. Tatarenko
  • Pawel Szroeder
Regular Article


The study deals with electronic properties of uniaxially stressed mono- and multi-layer graphene sheets with various kinds of imperfection: point defects modelled as resonant (neutral) adsorbed atoms or molecules, vacancies, charged impurities, and local distortions. The presence of randomly distributed defects in a strained graphene counteract the band-gap opening and even can suppress the gap occurs when they are absent. However, impurity ordering contributes to the band gap appearance and thereby re-opens the gap being suppressed by random dopants in graphene stretched along zigzag-edge direction. The band gap is found to be non-monotonic with strain in case of mutual action of defect ordering and zigzag deformation. Herewith, the minimal tensile strain required for the band-gap opening (≈12.5%) is smaller than that for defect-free graphene (≈23%), and band gap energy reaches the value predicted for maximal nondestructive strains in the pristine graphene. Effective manipulating the band gap in graphene requires balanced content of ordered dopants: their concentration should be sufficient for a significant sublattice asymmetry effect, but not so much that they may suppress the band gap or transform it into the “quasi- (or pseudo-) gap”.


Solid State and Materials 


  1. 1.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Han, B. Ozyilmaz, Y. Zhang, P.H. Kim, Phys. Rev. Lett. 98, 206805-1 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    J. Bai, X. Zhong, S. Jiang, Y. Huang, X. Duan, Nat. Nanotechnol. 5, 190 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802-1 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    D. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F. Ouyang, S. Peng, Z. Liu, Z.F. Liu, Z.R. Liu, ACS Nano 5, 4023 (2011)CrossRefGoogle Scholar
  7. 7.
    S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Phys. Rev. B 76, 079902-1 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    T.M. Radchenko, V.A. Tatarenko, Solid State Phenom. 150, 43 (2009)CrossRefGoogle Scholar
  10. 10.
    T.M. Radchenko, V.A. Tatarenko, Solid State Sci. 12, 204 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T.M. Radchenko, V.A. Tatarenko, Physica E 42, 2047 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, Phys. Lett. A 378, 2270 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, P. Szroeder, S. Biniak, Carbon 101, 37 (2016)CrossRefGoogle Scholar
  14. 14.
    T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, Yu.I. Prylutskyy, in Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance, edited by B.T. Edwards (Nova Science Publishers, New York, 2014), pp. 219–259, arXiv:1406.0783
  15. 15.
    I.Yu. Sagalianov, Yu.I. Prylutskyy, T.M. Radchenko, V.A. Tatarenko, Uspehi Fiziki Metallov 11, 95 (2010)CrossRefGoogle Scholar
  16. 16.
    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2, 2301 (2008)CrossRefGoogle Scholar
  17. 17.
    Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 3, 483 (2009)CrossRefGoogle Scholar
  18. 18.
    R.M. Ribeiro, V.M. Pereira, N.M.R. Peres, P.R. Briddon, A.H. Castro Neto, New J. Phys. 11, 115002-1 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Pereira, A.H. Castro Neto, N.M.R. Peres, Phys. Rev. B 80, 045401-1 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    V.M. Pereira, A.H. Castro Neto, Phys. Rev. Lett. 103, 046801-1 (2009)ADSGoogle Scholar
  21. 21.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    G. Lopez-Polin, C. Gomez-Navarro, V. Parente, F. Guinea, M.I. Katsnelson, F. Perez-Murano, J. Gomez-Herrero, Nat. Phys. 11, 26 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Liu, P. Ming, J. Li, Phys. Rev. B 76, 064120-1 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Phys. Rev. Lett. 102, 235502-1 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C. Si, Z. Sun, F. Liu, Nanoscale 8, 3207 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    B. Amorim, A. Cortijo, F. de Juan, A.G. Grushin, F. Guinea, A. Gutierrez-Rubio, H. Ochoa, V. Parente, R. Roldan, P. San-Jose, J. Schiefele, M. Sturla, M.A.H. Vozmediano, Phys. Rep. 617, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Bradley, Mater. Today 15, 185 (2012)CrossRefGoogle Scholar
  29. 29.
    K.S. Novoselov, A.H. Castro Neto, Phys. Scripta T146, 14006-1 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    G. Gui, J. Li, J. Zhong, Phys. Rev. B 78, 075435-1 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    X. He, L. Gao, N. Tang, J. Duan, F. Xu, X. Wang, X. Yang, W. Ge, B. Shen, Appl. Phys. Lett. 105, 083108-1 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    G. Cocco, E. Cadelano, L. Colombo, Phys. Rev. B 81, 241412(R)-1 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    I.I. Naumov, A.M. Bratkovsky, Phys. Rev. B 84, 245444-1 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    N. Kerszberg, P. Suryanarayana, RSC Adv. 5, 43810 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  36. 36.
    T. Low, F. Guinea, M.I. Katsnelson, Phys. Rev. B 83, 195436-1 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    X. He, L. Gao, N. Tang, J. Duan, F. Mei, H. Meng, F. Lu, F. Xu, X. Wang, X. Yang, W. Ge, B. Shen, Appl. Phys. Lett. 104, 243108-1 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    G. Gui, J. Li, J. Zhong, Phys. Rev. B 80, 167402-1 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407(R)-1 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    G. Gui, D. Morgan, J. Booske, J. Zhong, Z. Ma, Appl. Phys. Lett. 106, 053113-1 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    N. Blanc, F. Jean, A.V. Krasheninnikov, G. Renaud, J. Coraux, Phys. Rev. Lett. 111, 085501-1 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Ren, G. Cao, Carbon 103, 125 (2016)CrossRefGoogle Scholar
  43. 43.
    X. He, Q.S. Bai, J.X. Bai, Acta Phys. Sinica 65, 116101-1 (2016)Google Scholar
  44. 44.
    S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82, 115448-1 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    S. Yuan, H. De Raedt, M.I. Katsnelson, Phys. Rev. B 82, 235409-1 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    M.S. Dresselhaus, G. Dresselhaus, Adv. Phys. 30, 139 (1981)ADSCrossRefGoogle Scholar
  47. 47.
    J.W. McClure, Phys. Rev. 108, 612 (1957)ADSCrossRefGoogle Scholar
  48. 48.
    J.C. Slonczewski, P.R. Weiss, Phys. Rev. 109, 272 (1958)ADSCrossRefGoogle Scholar
  49. 49.
    J.W. McClure, Phys. Rev. 119, 606 (1960)ADSCrossRefGoogle Scholar
  50. 50.
    M. Orlita, C. Faugeras, J.M. Schneider, G. Martinez, D.K. Maude, M. Potemski, Phys. Rev. Lett. 102, 166401-1 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    J.M. Schneider, M. Orlita, M. Potemski, D.K. Maude, Phys. Rev. Lett. 102, 166403-1 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    E. McCann, M. Koshino, Rep. Prog. Phys. 76, 056503-1 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    B. Burgos, J. Warnes, L.R.F. Leandro Lima, C. Lewenkopf, Phys. Rev. B 91, 115403-1 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    N. Leconte, A. Ferreira, J. Jung, Semiconduct. Semimet. 95, 35 (2016)CrossRefGoogle Scholar
  55. 55.
    A.H. Castro Neto, F. Guinea, Phys. Rev. B 75, 045404-1 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    L. Blakslee, D.G. Proctor, E.J. Seldin, G.B. Stence, T. Wen, J. Appl. Phys. 41, 3373 (1970)ADSCrossRefGoogle Scholar
  57. 57.
    M. Farjam, H. Rafii-Tabar, Phys. Rev. B 80, 167401-1 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, Phys. Rev. B 86, 035418-1 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, A. Ferreira, Phys. Rev. B 87, 195448-1 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    T.M. Radchenko, A.A. Shylau, I.V. Zozoulenko, Solid State Commun. 195, 88 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 80, 085428-1 (2009)ADSCrossRefGoogle Scholar
  62. 62.
    T.O. Wehling, S. Yuan, A.I. Lichtenstein, A.K. Geim, M.I. Katsnelson, Phys. Rev. Lett. 105, 056802-1 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    J.P. Robinson, H. Schomerus, L. Oroszlany, Phys. Rev. Lett. 101, 196803-1 (2010)ADSCrossRefGoogle Scholar
  64. 64.
    N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411-1 (2006)ADSGoogle Scholar
  65. 65.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)ADSCrossRefGoogle Scholar
  66. 66.
    J.A. Lawlor, C.G. Rocha, V. Torres, A. Latgé, M.S. Ferreira, J. Phys.: Condens. Matter 28, 235001-1 (2016)ADSGoogle Scholar
  67. 67.
    J. Yan, M.S. Fuhrer, Phys. Rev. Lett. 107, 206601-1 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    V.V. Cheianov, O. Syljuåsen, B.L. Altshuler, V.I. Fal’ko, Eur. Phys. Lett. 89, 56003-1 (2010)ADSCrossRefGoogle Scholar
  69. 69.
    V.V. Cheianov, O. Syljuasen, B.L. Altshuler, V.I. Fal’ko, Phys. Rev. B 80, 233409-1 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    V.V. Cheianov, V.I. Fal’ko, O. Syljuasen, B.L. Altshuler, Solid State Commun. 149, 1499 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    C.A. Howard, M.P.M. Dean, F. Withers, Phys. Rev. B 84, 241404-1 (2011)ADSCrossRefGoogle Scholar
  72. 72.
    C.-L. Song, B. Sun, Y.-L. Wang, Y.-P. Jiang, L. Wang, K. He, X. Chen, P. Zhang, X.-C. Ma, Q.-K. Xue, Phys. Rev. Lett. 108, 156803-1 (2012)ADSCrossRefGoogle Scholar
  73. 73.
    C. Lin, Y. Feng, Y. Xiao, M. Dürr, X. Huang, X. Xu, R. Zhao, E. Wang, X.-Z. Li, Z. Hu, Nano. Lett. 15, 903 (2015)ADSCrossRefGoogle Scholar
  74. 74.
    D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  75. 75.
    J.C. Meyer, C.O. Girit, M.F. Crommie, A. Zettl, Nature 454, 319 (2008)ADSCrossRefGoogle Scholar
  76. 76.
    Z. Wang, Y. Zhang, F. Liu, Phys. Rev. B 83, 041403-1 (2011)ADSCrossRefGoogle Scholar
  77. 77.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009)ADSCrossRefGoogle Scholar
  78. 78.
    M. Mabrouk, R. Hayn, Phys. Rev. B 92, 184424-1 (2015)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dept. of General Physics, Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of UkraineKyivUkraine
  3. 3.Dept. of Biophysics, Institute of Biology and Medicine, Taras Shevchenko National University of KyivKyivUkraine
  4. 4.Institute of Physics, Kazimierz Wielki UniversityBydgoszczPoland

Personalised recommendations