Regularities and irregularities in order flow data

  • Martin Theissen
  • Sebastian M. Krause
  • Thomas Guhr
Regular Article

Abstract

We identify and analyze statistical regularities and irregularities in the recent order flow of different NASDAQ stocks, focusing on the positions where orders are placed in the order book. This includes limit orders being placed outside of the spread, inside the spread and (effective) market orders. Based on the pairwise comparison of the order flow of different stocks, we perform a clustering of stocks into groups with similar behavior. This is useful to assess systemic aspects of stock price dynamics. We find that limit order placement inside the spread is strongly determined by the dynamics of the spread size. Most orders, however, arrive outside of the spread. While for some stocks order placement on or next to the quotes is dominating, deeper price levels are more important for other stocks. As market orders are usually adjusted to the quote volume, the impact of market orders depends on the order book structure, which we find to be quite diverse among the analyzed stocks as a result of the way limit order placement takes place.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.D. Farmer, D. Foley, Nature 460, 685 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    E.J. Lee, K.S. Eom, K.S. Park, J. Financ. Mark. 16, 227 (2013) CrossRefGoogle Scholar
  3. 3.
    A.A. Kirilenko, A.S. Kyle, M. Samadi, T. Tuzun, The flash crash: the impact of high frequency trading on an electronicmarket (2015), DOI: 10.2139/ssrn.1686004
  4. 4.
    J. Brogaard, High frequency trading and its impact on market quality, Northwestern University Kellogg School of Management Working Paper, 2010, Vol. 66 Google Scholar
  5. 5.
    F. Patzelt, K. Pawelzik, Sci. Rep. 3, 2784 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    F. Meudt, T.A. Schmitt, R. Schäfer, T. Guhr, Physica A 453, 228 (2016) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    S.M. Krause, S. Bornholdt, Physica A 392, 4048 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    R. Cont, Quant. Finance 1, 223 (2001) CrossRefGoogle Scholar
  9. 9.
    M.D. Gould, M.A. Porter, S. Williams, M. McDonald, D.J. Fenn, S.D. Howison, Quant. Finance 13, 1709 (2013) CrossRefMathSciNetGoogle Scholar
  10. 10.
    A.S. Chakrabarti, R. Lahkar, Eur. Phys. J. Special Topics 225, 3115 (2016) ADSCrossRefGoogle Scholar
  11. 11.
    M. Potters, J.-P. Bouchaud, Physica A 324, 133 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    A. Gareche, G. Disdier, J. Kockelkoren, J.-P. Bouchaud, Phys. Rev. E 88, 032809 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    S. Wang, R. Schäfer, T. Guhr, Eur. Phys. J. B 89, 207 (2016) ADSCrossRefGoogle Scholar
  14. 14.
    J. Hasbrouck, D.J. Seppi, J. Financ. Econ. 59, 383 (2001) CrossRefGoogle Scholar
  15. 15.
    A. Boulatov, T. Hendershott, D. Livdan, Rev. Econ. Stud. 80, 35 (2013) CrossRefMathSciNetGoogle Scholar
  16. 16.
    P. Pasquariello, C. Vega, Rev. Finance 19, 229 (2013) CrossRefGoogle Scholar
  17. 17.
    T. Chordia, R. Roll, A. Subrahmanyam, J. Financ. Econ. 56, 3 (2000) CrossRefGoogle Scholar
  18. 18.
    Y. Stepanov, P. Rinn, T. Guhr, J. Peinke, R. Schäfer, J. Stat. Mech.: Theory Exp. 2015, P08011 (2015) CrossRefGoogle Scholar
  19. 19.
    H. Bessembinder, H.M. Kaufman, J. Financ. Quant. Anal. 32, 287 (1997) CrossRefGoogle Scholar
  20. 20.
    D.E. Taranto, G. Bormetti, J.-P. Bouchaud, F. Lillo, B. Toth, Linear models for the impact of order flow on prices II. The mixture transition distribution model, 2016 Google Scholar
  21. 21.
    M. MacMahon, D. Garlaschelli, Phys. Rev. X 5, 021006 (2013) Google Scholar
  22. 22.
    M.C. Münnix, T. Shimada, R. Schäfer, F. Leyvraz, T.H. Seligman, T. Guhr, H.E. Stanley, Sci. Rep. 2, 644 (2012) CrossRefGoogle Scholar
  23. 23.
    D. Bernhardt, B. Taub, J. Finance 63, 2385 (2008) CrossRefGoogle Scholar
  24. 24.
    P. Seiler, B. Taub, Finance Stoch. 12, 43 (2008) CrossRefMathSciNetGoogle Scholar
  25. 25.
    J.-J. Chen, L. Tan, B. Zheng, Sci. Rep. 5, 8399 (2015) CrossRefGoogle Scholar
  26. 26.
    V. Darley, in A NASDAQ market simulation: insights on a major market from the science of complex adaptive systems (World Scientific, Singapore, 2007), Vol. 1 Google Scholar
  27. 27.
    I. Giardina, J.-P. Bouchaud, M. Mézard, Physica A 299, 28 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    D. Challet, M. Marsili, Y.-C. Zhang, Physica A 294, 514 (2001) ADSCrossRefGoogle Scholar
  29. 29.
  30. 30.
    http://tradingphysics.com/ (accessed 2016/14/09)
  31. 31.
    R. Huang, T. Polak, Lobster: Limit Order Book Reconstruction System (2011), DOI: 10.2139/ssrn.1977207
  32. 32.
  33. 33.
  34. 34.
  35. 35.
    N. Hautsch, R. Huang, Limit order flow, market impact and optimal order sizes: evidence from NASDAQ TotalView-ITCH data, in Market Impact and Optimal Order Sizes: Evidence from NASDAQ TotalView-ITCH Data, 22 August 2011 (2011) Google Scholar
  36. 36.
  37. 37.
    J.-P. Bouchaud, M. Mézard, M. Potters et al., Quant. Finance 2, 251 (2002) CrossRefGoogle Scholar
  38. 38.
    B. Szalkai, An implementation of the relational k-means algorithm, arXiv:1304.6899 (2013)
  39. 39.
    P.J. Rousseeuw, J. Comput. Appl. Math. 20, 53 (1987) CrossRefGoogle Scholar
  40. 40.
    Z. Eisler, J.-P. Bouchaud, J. Kockelkoren, Quant. Finance 12, 1395 (2012) CrossRefMathSciNetGoogle Scholar
  41. 41.
    K. Dayri, M. Rosenbaum, Mark. Microstruct. Liq. 1, 1550003 (2015) CrossRefGoogle Scholar
  42. 42.
    J. Doyne Farmer, L. Gillemot, F. Lillo, S. Mike, A. Sen, Quant. Finance 4, 383 (2004) CrossRefGoogle Scholar
  43. 43.
    S. Mike, J.D. Farmer, J. Econ. Dyn. Control 32, 200 (2008) CrossRefGoogle Scholar
  44. 44.
    L. Harris, Trading and exchanges: market microstructure for practitioners (Oxford University Press, USA, 2003) Google Scholar
  45. 45.
    T. Hendershott, C.M. Jones, A.J. Menkveld, J. Finance 66, 1 (2011) CrossRefGoogle Scholar
  46. 46.
    B. Biais, P. Hillion, C. Spatt, J. Finance 50, 1655 (1995) CrossRefGoogle Scholar
  47. 47.
    T.A. Schmitt, R. Schäfer, M.C. Münnix, T. Guhr, Europhys. Lett. 100, 38005 (2012) ADSCrossRefGoogle Scholar
  48. 48.
    M.C. Münnix, R. Schäfer, T. Guhr, Physica A 389, 4828 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Martin Theissen
    • 1
  • Sebastian M. Krause
    • 1
  • Thomas Guhr
    • 1
  1. 1.Faculty of Physics, University of Duisburg-EssenDuisburgGermany

Personalised recommendations