Skip to main content
Log in

First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.I. Yanson, G.R. Bollinger, H.E. van der Brom, N. Agraït, J.M. van Ruitenbeek, Nature 395, 783 (1998)

    Article  ADS  Google Scholar 

  2. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  3. D. Cakır, O. Gülseren, Phys. Rev. B 84, 085450 (2011)

    Article  ADS  Google Scholar 

  4. J.C. Tung, G.Y. Guo, Phys. Rev. B 76, 094413 (2007)

    Article  ADS  Google Scholar 

  5. C. Ataca, S. Cahangirov, E. Durgun, Y.R. Jang, S. Ciraci, Phys. Rev. B 77, 214413 (2008)

    Article  ADS  Google Scholar 

  6. Y. Mokrousov, G. Bihlmayer, S. Heinze, S. Blugel, Phys. Rev. Lett. 96, 147201 (2006)

    Article  ADS  Google Scholar 

  7. V.G. Boutko, A.A. Gusev, T.N. Shevtsova, Y.G. Pashkevich, Low Temp. Phys. 42, 421 (2016)

    Article  ADS  Google Scholar 

  8. V.G. Boutko, A.A. Gusev, T.N. Shevtsova, Y.G. Pashkevich, Low Temp. Phys. 40, 542 (2014)

    Article  ADS  Google Scholar 

  9. S. Naderi, M. Shahrokhi, H.R. Noruzi, A. Gurabi, R. Moradian, Eur. Phys. J. Appl. Phys. 62, 30402 (2013)

    Article  ADS  Google Scholar 

  10. Y. Xie, J.M. Zhang, Y.P. Huo, Eur. Phys. J. B 81, 459 (2011)

    Article  ADS  Google Scholar 

  11. J. Wang, C. Jo, R. Wu, Appl. Phys. Lett. 92, 032507 (2008)

    Article  ADS  Google Scholar 

  12. N. Li, X. Li, X. Yin, W. Wang, S. Qiu, Solid State Commun. 132, 841 (2004)

    Article  ADS  Google Scholar 

  13. M.V. Kamalakar, A.K. Raychaudhuri, Adv. Mater. 20, 149 (2008)

    Article  Google Scholar 

  14. F. Meng, S. Jin, Nano Lett. 12, 234 (2012)

    Article  ADS  Google Scholar 

  15. Y.N. Duan, J.M. Zhang, K.W. Xu, Sci. China: Phys. Mech. Astron. 57, 644 (2014)

    Article  ADS  Google Scholar 

  16. W. Fa, J. Zhou, J.M. Dong, Y. Kawazoe, J. Chem. Phys. 134, 244504 (2011)

    Article  ADS  Google Scholar 

  17. J.W. Kang, J.J. Seo, H.J. Hwang, J. Phys.: Condens. Matter 14, 8997 (2002)

    ADS  Google Scholar 

  18. B.L. Wang, X.S. Chen, G.B. Chen, G.H. Wang, J.J. Zhao, Solid State Commun. 129, 25 (2004)

    Article  ADS  Google Scholar 

  19. L. Zhu, J. Wang, F. Ding, J. Chem. Phys. 130, 064706 (2009)

    Article  ADS  Google Scholar 

  20. Y. Mokrousov, G. Bihlmayer, S. Blügel, Phys. Rev. B 72, 045402 (2005)

    Article  ADS  Google Scholar 

  21. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  22. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  23. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  24. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Spišàk, J. Hafner, Phys. Rev. B 67, 214416 (2003)

    Article  ADS  Google Scholar 

  28. D.S. Wang, R. Wu, A.J. Freeman, Phys. Rev. B 47, 14932 (1993)

    Article  ADS  Google Scholar 

  29. H. Takayama, K.P. Bohnen, P. Fulde, Phys. Rev. B 14, 2287 (1976)

    Article  ADS  Google Scholar 

  30. A.B. Shick, A.I. Liechtenstein, J. Phys.: Condens. Matter 20, 015002 (2008)

    ADS  Google Scholar 

  31. P. Błoński, J. Hafner, J. Phys.: Condens. Matter 21, 426001 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Cai Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LC., Ma, L. & Zhang, JM. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube. Eur. Phys. J. B 90, 141 (2017). https://doi.org/10.1140/epjb/e2017-80078-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80078-7

Keywords

Navigation