Langevin dynamics simulation of a one-dimensional linear spin chain with long-range interactions

Regular Article


In this paper we study the critical behavior of a simple one-dimensional rotor spin in the form of a linear chain with long-range interactions, using the mean field Langevin dynamics approach and in the presence of fluctuations added by a heat bath. We have computed the specific heat, the magnetic susceptibility, the Binder fourth-order cumulant, and the magnetization, and then we have calculated the critical exponents using finite-size scaling. In addition, we provide a relation between the thermal bath temperature and the temperature of the system. Our results confirm the existence of a second-order critical temperature in the one-dimensional chain of spins with long-range interaction.


Statistical and Nonlinear Physics 


  1. 1.
    R. Toral, J. Stat. Phys. 114, 1393 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    S.D. Nigris, X. Leoncini, Phys. Rev. E 88, 012131 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H. Hong, B.J. Kim, J. Korean Phys. Soc. 64, 954 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    K. Medvedyeva, P. Holme, P. Minnhagen, B. Jun Kim, Phys. Rev. E 67, 036118 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    R. Gupta, J. Delapp, G. Batrouni, C. Geoffrey, F. Baillie, J. Apostolakis, Phys. Rev. Lett. 61, 1996 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    T. Kennedy, H. Lieb, B.S. Shastry, Phys. Rev. Lett. 61, 2582 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    A. Campa, T. Dauxois, S. Ruffo, Phys. Rep. 480, 57 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P.H. Chavanis, Eur. Phys. J. B 80, 275 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    D. Quigley, M.I.J. Probert, Comput. Phys. Commun. 169, 1 (2005)CrossRefGoogle Scholar
  12. 12.
    L. Casetti, S. Gupta, Eur. Phys. J. B 87, 91 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    M. Takamoto, Y. Muraoka, T. Idogaki, J. Phys.: Conf. Ser. 200, 2 (2010)Google Scholar
  14. 14.
    B.J. Kim, H. Hong, P. Holme, G.S. Jeon, P. Minnhagen, M.Y. Choi, Phys. Rev. E 64, 056135 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    L.S. Tsimring, N.F. Rulkov, M.L. Larsen, M. Gabbay, Phys. Rev. Lett. 95, 014101 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    P. Krysl, L. Endres, Int. J. Numer. Meth. Eng. 62, 2154 (2005)CrossRefGoogle Scholar
  18. 18.
    M.G. Paterlini, D.M. Ferguson, Chem. Phys. 236, 243 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd edn. (Academic Press, 2002), p. 664Google Scholar
  20. 20.
    P. Olsson, Phys. Rev. Lett. 75, 2758 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    K. Binder, Phys. Rev. Lett. 47, 693 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. (Cambridge University Press, 2009), p. 78Google Scholar
  23. 23.
    H. Hong, K.P. O’Keeffe, S.H. Strogatz, AIP Chaos 26, 103105 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    E.J. Flores-Sola, B. Berche, R. Kenna, M. Weigel, Eur. Phys. J. B 88, 1 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Moncef Ati
    • 1
  • Cristian Enachescu
    • 2
  • Rachid Bouamrane
    • 1
  1. 1.LEPM, Faculté de physique, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, USTO-MBOranAlgeria
  2. 2.Faculty of Physics, Alexandru Ioan Cuza UniversityIasiRoumania

Personalised recommendations