Mobility of carrier in the single-side and double-side doped square quantum wells

Regular Article
  • 57 Downloads

Abstract

We present a theoretical study of the effect from doping of quantum wells (QWs) on enhancement of the mobility in one-side (1S) and two-side (2S) doped square infinite quantum well. Within the variational approach, we introduce the enhancement factor defined by the ratio of the overall mobility in the 2S doped square quantum wells to that in the 1S doped counterpart with the same sheet carrier density and interface profiles. The enhancement is fixed by the sample parameters such as well width and sheet carrier density. We propose two-side doping as an efficient way to upgrade the quality of QWs. Our theory is able to well reproduce the recent experimental data about low-temperature transport of electrons and holes in one-side and two-side doped square QWs.

Keywords

Solid State and Materials 

References

  1. 1.
    D.N. Quang, N.H. Tung, Phys. Rev. B 77, 125335 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    D.N. Quang, N.H. Tung, D.T. Hien, T.T. Hai, J. Appl. Phys. 104, 113711 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    D.N. Quang, N.H. Tung, N.T. Hong, T.T. Hai, J. Phys. Soc. Jpn 80, 044714 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Y.H. Xie, D. Monroe, E.A. Fitzgerald, P.J. Silverman, F.A. Thiel, G.P. Watson, Appl. Phys. Lett. 63, 2263 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    R.J.H. Morris, T.J. Grasby, R. Hammond, M. Myronov, O.A. Mironov, D.R. Leadley, T.E. Whall, E.H.C. Parker, M.T. Currie, C.W. Leitz, E.A. Fitzgerald, Semicond. Sci. Technol. 19, L106 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    H.Çelik, M. Cankurtaran, A. Bayrakli, E. Tiras, N. Balkan, Semicond. Sci. Technol. 12, 389 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    M. Cankurtaran, H.Çelik, E. Tiras, A. Bayrakli, N. Balkan, Phys. Status Solidi B 207, 139 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    C. Gerl, S. Schmult, H.-P. Tranitz, C. Mitzkus, W. Wegscheider, Appl. Phys. Lett. 86, 252105 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    C. Gerl, S. Schmult, U. Wurstbauer, H.-P. Tranitz, C. Mizkus, W. Wegscheider, Physica E 32, 258 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    B. Rössner, H. von Känel, D. Chrastina, G. Isella, B. Batlogg, Thin Solid Films 508, 351 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M. Myronov, K. Sawano, Y. Shiraki, Appl. Phys. Lett. 88, 252115 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A. Gold, Phys. Rev. B 35, 723 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    A. Gold, Phys. Rev. B 38, 10798 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    T. Ando, A.B. Fowler, F. Stern, Rev. Mod. Phys. 54, 437 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    M. Jonson, J. Phys. C 9, 3055 (1976)ADSCrossRefGoogle Scholar
  16. 16.
    D.N. Quang, V.N. Tuoc, T.D. Huan, Phys. Rev. B 68, 195316 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    R.M. Feenstra, M.A. Lutz, J. Appl. Phys. 78, 6091 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    R.M. Feenstra, M.A. Lutz, F. Stern, K. Ismail, P.M. Mooney, F.K. LeGoues, C. Stanis, J.O. Chu, B.S. Meyerson, J. Vac. Sci. Technol. B 13, 1608 (1995)CrossRefGoogle Scholar
  19. 19.
    D.N. Quang, V.N. Tuoc, T.D. Huan, P.N. Phong, Phys. Rev. B 70, 195336 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    G.L. Bir, G.E. Pikus, Symmetry and Strain Induced Effects in Semiconductors (Wiley, New York, 1974)Google Scholar
  21. 21.
    C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    D.N. Quang, V.N. Tuoc, N.H. Tung, T.D. Huan, Phys. Rev. Lett. 89, 077601 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    D.N. Quang, V.N. Tuoc, N.H. Tung, T.D. Huan, Phys. Rev. B 68, 153306 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    D.N. Quang, N.H. Tung, Phys. Status Solidi B 207, 111 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Faculty of Natural Science, Hong Duc UniversityThanhhoaVietnam
  2. 2.Duy Tan UniversityDanangVietnam

Personalised recommendations