Perfect quantum excitation energy transport via single edge perturbation in a complete network

  • Hassan Bassereh
  • Vahid Salari
  • Farhad Shahbazi
  • Tapio Ala-Nissila
Regular Article
  • 46 Downloads

Abstract

We consider quantum excitation energy transport (EET) in a network of two-state nodes in the Markovian approximation by employing the Lindblad formulation. We find that EET from an initial site, where the excitation is inserted to the sink, is generally inefficient due to the inhibition of transport by localization of the excitation wave packet in a symmetric, fully-connected network. We demonstrate that the EET efficiency can be significantly increased up to ≈100% by perturbing hopping transport between the initial node and the one connected directly to the sink, while the rate of energy transport is highest at a finite value of the hopping parameter. We also show that prohibiting hopping between the other nodes which are not directly linked to the sink does not improve the efficiency. We show that external dephasing noise in the network plays a constructive role for EET in the presence of localization in the network, while in the absence of localization it reduces the efficiency of EET. We also consider the influence of off-diagonal disorder in the hopping parameters of the network.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    B. Gemeinholzer, Phylogenetic networks, in Analysis of Biological Networks, edited by B.H. Junker, F. Schreiber (John Wiley & Sons, Inc., Hoboken, NJ, USA), 2008Google Scholar
  2. 2.
    R. Pastor-Satorras, M. Rubi, A. Diaz-Guilera, Statistical Mechanics of Complex Networks (Springer Science & Business Media, 2003), Vol. 625Google Scholar
  3. 3.
    Z. Zimboras, M. Faccin, Z. Kadar, J.D. Whitfield, B.P. Lanyon, J. Biamonte, Sci. Rep. 3, 2361 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    F. Caruso, New J. Phys. 16, 055015 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    S. Perseguers, M. Lewenstein, A. Acín, J.I. Cirac, Nat. Phys. 6, 539 (2010)CrossRefGoogle Scholar
  6. 6.
    B. Giese, J. Amaudrut, A.K. Köhler, M. Spormann, S. Wessely, Nature 412, 318 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    H. Lee, Y.C. Cheng, G.R. Fleming, Science 316, 1462 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, G.R. Fleming, Nature 434, 625 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Nature 446, 782 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    A. Ishizaki, G.R. Fleming, Proc. Natl. Acad. Sci. 106, 17255 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    R.E. Fenna, B.W. Matthews, Nature 258, 573 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    J. Adolphs, T. Renger, Biophys. J. 91, 2778 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, E. Harel, J. Wen, R.E. Blankenship, G.S. Engel, Proc. Natl. Acad. Sci. USA 107, 12766 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    E. Collini, C.Y. Wong, K.E. Wilk, P.M.G. Curmi, P. Brumer, G.D. Scholes, Nature 463, 644 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    R. Hildner, D. Brinks, J.B. Nieder, R.J. Cogdell, N.F. van Hulst, Science 340, 1448 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    A. Olaya-Castro, C.F. Lee, F.F. Olsen, N.F. Johnson, Phys. Rev. B 78, 085115 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    F. Caruso, A.W. Chin, A. Datta, S.F. Huelga, M.B. Plenio, J. Chem. Phys. 131, 105106 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A.W. Chin, A. Datta, F. Caruso, S.F. Huelga, M.B. Plenio, New J. Phys. 12, 065002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 129, 174106 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, A. Aspuru-Guzik, New J. Phys. 11, 033003 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    O. Mülken, A. Blumen, Phys. Rep. 502, 37 (2011)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C.H. Bennett, G. Brassard, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, pp. 175–179Google Scholar
  24. 24.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Acín, J.I. Cirac, M.M. Lewenstein, Nat. Phys. 3, 256 (2007)CrossRefGoogle Scholar
  26. 26.
    S. Perseguers, J.I. Cirac, A. Acín, M. Lewenstein, J. Wehr, Phys. Rev. A 77, 022308 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    H.J. Kimble, Nature 453, 1023 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    N. Gisin, R. Thew, Nat. Photon. 1, 165 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    D.I. Tsomokos, M.B. Plenio, I. de Vega, S.F. Huelga, Phys. Rev. A 78, 062310 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    S. Bose, A. Casaccino, S. Mancini, S. Severini, Int. J. Quant. Inform. 7, 713 (2009)CrossRefGoogle Scholar
  31. 31.
    L. Novo, S. Chakraborty, M. Mohseni, H. Neven, Y. Omar, Sci. Rep. 5, 13304 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A. Barrat, M. Berthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, 2008)Google Scholar
  33. 33.
    M.B. Plenio, S.F. Huelga, New J. Phys. 10, 113019 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    H. Bassereh, V. Salari, F. Shahbazi, J. Phys.: Condens. Matter 27, 275102 (2015)ADSGoogle Scholar
  35. 35.
    A. Asadian, M. Tiersch, G.G. Guerreschi, J. Cai, S. Popescu, H.J. Briegel, New J. Phys. 12, 075019 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J.R. Johansson, P.D. Nation, F. Nori, Comput. Phys. Commun. 184, 1234 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    R.S. Ingarden, A. Kossakowski, M. Ohya, Information Dynamics and Open Systems: Classical and Quantum Approach (Springer Science & Business Media, 2013)Google Scholar
  38. 38.
    A. Rivas, S.F. Huelga, Open Quantum Systems (Springer, Berlin, 2012)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hassan Bassereh
    • 1
  • Vahid Salari
    • 1
    • 2
  • Farhad Shahbazi
    • 1
  • Tapio Ala-Nissila
    • 3
    • 4
  1. 1.Department of PhysicsIsfahan University of TechnologyIsfahanIran
  2. 2.School of Physics, Institute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Department of Applied Physics and COMP CoEAalto University School of ScienceEspooFinland
  4. 4.Departments of Mathematical Sciences and Physics, Loughborough UniversityLeicestershireUK

Personalised recommendations