A DFT+U study of the catalytic activity of lanthanum nickelate

Regular Article
  • 54 Downloads

Abstract

A density functional theory + Hubbard U (DFT+U) method is implemented to investigate the catalytic activity of lanthanum nickelate (LaNiO3) for oxygen reduction reaction. Comparison of the surface energies of different LaNiO3 surfaces shows that {001} surface has the lowest surface energy and hence maximum stability. Two possible terminations of the {001} surface namely LaO and NiO2 are considered to carry out all our DFT calculations. Calculation of bond lengths of the atoms near the surface and adsorption energies for the reaction intermediates revealed that LaO terminated {001} surface is unstable for the process of OOH adsorption and hence not preferred for the oxygen reduction reaction. However, NiO2 terminated {001} surface shows excellent catalytic activity for adsorption of all the reaction intermediates and hence is a favourable surface for reactions to occur. Superiority of the NiO2 terminated {001} surface as catalyst over the LaO terminated one, is also confirmed from the total and partial density of states of the surfaces in presence of the adsorbates, which also shows that the desorption rate of the reaction intermediates is low in case of LaO terminated {001} surface compared to the NiO2 terminated one.

Keywords

Solid State and Materials 

References

  1. 1.
    J.K. Nørskov, T. Bligaard, J. Rossmeis, C.H. Christensen, Nat. Chem. 1, 37 (2009)CrossRefGoogle Scholar
  2. 2.
    J.R. Petrie, V.R. Cooper, J.W. Freeland, T.L. Meyer, Z. Zhang, D.A. Lutterman, H.N. Lee, J. Am. Chem. Soc. 138, 2488 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Sakthivel, S. Bhandari, J.F. Drillet, ECS Electrochem. Lett. 4, A56 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Phys. Chem. Chem. Phys. 15, 2809 (2013)CrossRefGoogle Scholar
  5. 5.
    C.E. Szakacs, M. Lefevre, U.I. Kramm, J.P. Dodelet, F. Vidal, Phys. Chem. Chem. Phys. 16, 13654 (2014)CrossRefGoogle Scholar
  6. 6.
    X. Chen, RSC Adv. 6, 5535 (2016)CrossRefGoogle Scholar
  7. 7.
    C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, J. Mater. Chem. A 4, 11156 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Scient. Rep. 4, 6005 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Crespo, N. Seriani, J. Mater. Chem. A 2, 16538 (2014)CrossRefGoogle Scholar
  10. 10.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886 (2004)CrossRefGoogle Scholar
  11. 11.
    J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    L. Guan, J. Zuo, G. Jia, Q. Liu, W. Wei, J. Guo, X. Dai, B. Liu, Y. Wang, G. Fu, Appl. Surf. Sci. 264, 570 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    D. Misra, T.K. Kundu, J. Electron. Mater. 46, 150 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    M. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997)ADSGoogle Scholar
  15. 15.
    K. Matsuzawa, ECS Trans. 50, 403 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Srinivas, V.R.S. Rao, J. Radioanal. Nuclear Chem. 210, 3 (1996)CrossRefGoogle Scholar
  17. 17.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    MedeA 2.17, Materials Design Inc., Angel Fire, New Mexico, USA (2011)Google Scholar
  21. 21.
    G. Catalan, Phase Transitions 81, 729 (2008)CrossRefGoogle Scholar
  22. 22.
    D. Misra, T.K. Kundu, Mater. Res. Express 3, 095701 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    G. Gou, I. Grinberg, A.M. Rappe, J.M. Rondinelli, Phys. Rev. B 84, 144101 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    K.P. Rajeev, G.V. Shivashankar, A.K. Raychaudhuri, Solid State Commun. 79, 591 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    N. Hamada, J. Phys. Chem. Solids 54, 1157 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    D. Misra, T.K. Kundu, Comput. Mater. Sci. 112, 113 (2016)CrossRefGoogle Scholar
  28. 28.
    J.J. Zhu, W.W. Li, Y.W. Li, Y.D. Shen, Z.G. Hu, J.H. Chu, Appl. Phys. Lett. 97, 11904 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    A.J. Devey, R. Grau-Crespo, N.H. de Leeuw, J. Phys. Chem. C 112, 10960 (2008)CrossRefGoogle Scholar
  31. 31.
    L. Li, Z. Wei, S. Chen, X. Qi, W. Ding, M. Xia, R. Li, K. Xiong, Z. Deng, Y. Gao, Chem. Phys. Lett. 539, 89 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    P.W. Tasker, D.M. Duffy, Surf. Sci. 137, 91 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    H.J. Freund, H. Kuhlenbeck, V. Staemmler, Rep. Prog. Phys. 59, 283 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    J.K. Nørskov, F.A. Pedersena, F. Studta, T. Bligaard, Proc. Nat. Acad. Sci. USA 108, 937 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    A. Vojvodic, J.K. Nørskov, Science 334, 1355 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1, e1500564 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    S. Liu, M.G. White, P. Liu, J. Phys. Chem. C 120, 15288 (2016)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations