Skip to main content
Log in

A DFT+U study of the catalytic activity of lanthanum nickelate

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A density functional theory + Hubbard U (DFT+U) method is implemented to investigate the catalytic activity of lanthanum nickelate (LaNiO3) for oxygen reduction reaction. Comparison of the surface energies of different LaNiO3 surfaces shows that {001} surface has the lowest surface energy and hence maximum stability. Two possible terminations of the {001} surface namely LaO and NiO2 are considered to carry out all our DFT calculations. Calculation of bond lengths of the atoms near the surface and adsorption energies for the reaction intermediates revealed that LaO terminated {001} surface is unstable for the process of OOH adsorption and hence not preferred for the oxygen reduction reaction. However, NiO2 terminated {001} surface shows excellent catalytic activity for adsorption of all the reaction intermediates and hence is a favourable surface for reactions to occur. Superiority of the NiO2 terminated {001} surface as catalyst over the LaO terminated one, is also confirmed from the total and partial density of states of the surfaces in presence of the adsorbates, which also shows that the desorption rate of the reaction intermediates is low in case of LaO terminated {001} surface compared to the NiO2 terminated one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.K. Nørskov, T. Bligaard, J. Rossmeis, C.H. Christensen, Nat. Chem. 1, 37 (2009)

    Article  Google Scholar 

  2. J.R. Petrie, V.R. Cooper, J.W. Freeland, T.L. Meyer, Z. Zhang, D.A. Lutterman, H.N. Lee, J. Am. Chem. Soc. 138, 2488 (2016)

    Article  Google Scholar 

  3. M. Sakthivel, S. Bhandari, J.F. Drillet, ECS Electrochem. Lett. 4, A56 (2015)

    Article  Google Scholar 

  4. A. Lyalin, A. Nakayama, K. Uosaki, T. Taketsugu, Phys. Chem. Chem. Phys. 15, 2809 (2013)

    Article  Google Scholar 

  5. C.E. Szakacs, M. Lefevre, U.I. Kramm, J.P. Dodelet, F. Vidal, Phys. Chem. Chem. Phys. 16, 13654 (2014)

    Article  Google Scholar 

  6. X. Chen, RSC Adv. 6, 5535 (2016)

    Article  Google Scholar 

  7. C.R. Raj, A. Samanta, S.H. Noh, S. Mondal, T. Okajima, T. Ohsaka, J. Mater. Chem. A 4, 11156 (2016)

    Article  Google Scholar 

  8. J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Scient. Rep. 4, 6005 (2014)

    Article  ADS  Google Scholar 

  9. Y. Crespo, N. Seriani, J. Mater. Chem. A 2, 16538 (2014)

    Article  Google Scholar 

  10. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886 (2004)

    Article  Google Scholar 

  11. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)

    Article  ADS  Google Scholar 

  12. L. Guan, J. Zuo, G. Jia, Q. Liu, W. Wei, J. Guo, X. Dai, B. Liu, Y. Wang, G. Fu, Appl. Surf. Sci. 264, 570 (2013)

    Article  ADS  Google Scholar 

  13. D. Misra, T.K. Kundu, J. Electron. Mater. 46, 150 (2017)

    Article  ADS  Google Scholar 

  14. M. Medarde, J. Phys.: Condens. Matter 9, 1679 (1997)

    ADS  Google Scholar 

  15. K. Matsuzawa, ECS Trans. 50, 403 (2012)

    Article  Google Scholar 

  16. B. Srinivas, V.R.S. Rao, J. Radioanal. Nuclear Chem. 210, 3 (1996)

    Article  Google Scholar 

  17. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  18. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  19. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  20. MedeA 2.17, Materials Design Inc., Angel Fire, New Mexico, USA (2011)

  21. G. Catalan, Phase Transitions 81, 729 (2008)

    Article  Google Scholar 

  22. D. Misra, T.K. Kundu, Mater. Res. Express 3, 095701 (2016)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. G. Gou, I. Grinberg, A.M. Rappe, J.M. Rondinelli, Phys. Rev. B 84, 144101 (2011)

    Article  ADS  Google Scholar 

  25. K.P. Rajeev, G.V. Shivashankar, A.K. Raychaudhuri, Solid State Commun. 79, 591 (1991)

    Article  ADS  Google Scholar 

  26. N. Hamada, J. Phys. Chem. Solids 54, 1157 (1993)

    Article  ADS  Google Scholar 

  27. D. Misra, T.K. Kundu, Comput. Mater. Sci. 112, 113 (2016)

    Article  Google Scholar 

  28. J.J. Zhu, W.W. Li, Y.W. Li, Y.D. Shen, Z.G. Hu, J.H. Chu, Appl. Phys. Lett. 97, 11904 (2010)

    Article  ADS  Google Scholar 

  29. T. Arima, Y. Tokura, J.B. Torrance, Phys. Rev. B 48, 17006 (1993)

    Article  ADS  Google Scholar 

  30. A.J. Devey, R. Grau-Crespo, N.H. de Leeuw, J. Phys. Chem. C 112, 10960 (2008)

    Article  Google Scholar 

  31. L. Li, Z. Wei, S. Chen, X. Qi, W. Ding, M. Xia, R. Li, K. Xiong, Z. Deng, Y. Gao, Chem. Phys. Lett. 539, 89 (2012)

    Article  ADS  Google Scholar 

  32. P.W. Tasker, D.M. Duffy, Surf. Sci. 137, 91 (1984)

    Article  ADS  Google Scholar 

  33. H.J. Freund, H. Kuhlenbeck, V. Staemmler, Rep. Prog. Phys. 59, 283 (1996)

    Article  ADS  Google Scholar 

  34. J.K. Nørskov, F.A. Pedersena, F. Studta, T. Bligaard, Proc. Nat. Acad. Sci. USA 108, 937 (2011)

    Article  ADS  Google Scholar 

  35. A. Vojvodic, J.K. Nørskov, Science 334, 1355 (2011)

    Article  ADS  Google Scholar 

  36. J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1, e1500564 (2015)

    Article  ADS  Google Scholar 

  37. S. Liu, M.G. White, P. Liu, J. Phys. Chem. C 120, 15288 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Kumar Kundu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D., Kundu, T.K. A DFT+U study of the catalytic activity of lanthanum nickelate. Eur. Phys. J. B 90, 135 (2017). https://doi.org/10.1140/epjb/e2017-80041-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80041-8

Keywords

Navigation