Method of confidence domains in the analysis of noise-induced extinction for tritrophic population system

  • Irina Bashkirtseva
  • Lev Ryashko
  • Tatyana Ryazanova
Regular Article

Abstract

A problem of the analysis of the noise-induced extinction in multidimensional population systems is considered. For the investigation of conditions of the extinction caused by random disturbances, a new approach based on the stochastic sensitivity function technique and confidence domains is suggested, and applied to tritrophic population model of interacting prey, predator and top predator. This approach allows us to analyze constructively the probabilistic mechanisms of the transition to the noise-induced extinction from both equilibrium and oscillatory regimes of coexistence. In this analysis, a method of principal directions for the reducing of the dimension of confidence domains is suggested. In the dispersion of random states, the principal subspace is defined by the ratio of eigenvalues of the stochastic sensitivity matrix. A detailed analysis of two scenarios of the noise-induced extinction in dependence on parameters of considered tritrophic system is carried out.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Yu.A. Kuznetsov, S. Rinaldi, Math. Biosci. 134, 1 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.D. Bazykin, Nonlinear Dynamics of Interacting Populations (World Scientific, 1998)Google Scholar
  3. 3.
    B. Blasius, J. Kurths, L. Stone, Complex Population Dynamics: Nonlinear Modeling in Ecology, Epidemiology and Genetics(World Scientific, 2007) Google Scholar
  4. 4.
    M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker, Nature 413, 591 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    M. Rietkerk, S.C. Dekker, P.C. de Ruiter, J. van de Koppel, Science 305, 1926 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Duffy et al., Ecol. Lett. 10, 522 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Soliveres et al., Nature 536, 456 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, 1984)Google Scholar
  9. 9.
    V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems, Tutorial and Modern Development (Springer-Verlag, 2007)Google Scholar
  10. 10.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Gao, S.K. Hwang, J.M. Liu, Phys. Rev. Lett. 82, 1132 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    K. Matsumoto, I. Tsuda, J. Stat. Phys. 31, 87 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-C. Lai, T. Tel, Transient Chaos: Complex Dynamics on Finite Time Scales (Springer, 2011)Google Scholar
  14. 14.
    P. Chesson, Stochastic population models, in Ecological Heterogeneity, Ecological Studies: Analysis and Synthesis, edited by J. Kolasa, S.T.A. Pickett (1991), Vol. 86, p. 123Google Scholar
  15. 15.
    P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)CrossRefGoogle Scholar
  16. 16.
    L.J.S. Allen, An Introduction to the Stochastic Process With Applications to Biology (Pearson Education, 2003)Google Scholar
  17. 17.
    R. Lande, S. Engen, B.-E. Saether, Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003)Google Scholar
  18. 18.
    P.B. Adler, J.M. Drake, Am. Nat. 172, 186 (2008)CrossRefGoogle Scholar
  19. 19.
    B.A. Melbourne, A. Hastings, Nature 454, 100 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    S. Petrovskii, A. Morozov, H. Malchow, M. Sieber, Eur. Phys. J. B 78, 253 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    K.-K. Wang, X.-B. Liu, Y. Zhou, Phys. Scripta 90, 085002 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    K.-K. Wang, D.-C. Zong, S.-H. Li, J.-C. Wu, Chaos Solitons Fract. 91, 235 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    R. Lande, Am. Nat. 142, 911 (1993)CrossRefGoogle Scholar
  24. 24.
    L. Alvarez, J. Math. Biol. 43, 534 (2001)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Heino, M. Sabadell, Biol. Conserv. 110, 315 (2003)CrossRefGoogle Scholar
  26. 26.
    O. Ovaskainen, B. Meerson, Trends Ecol. Evol. 25, 643 (2010)CrossRefGoogle Scholar
  27. 27.
    I. Bashkirtseva, L. Ryashko, Eur. Phys. J. B 89, 165 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    K.-K. Wang, D.-C. Zong, Y.-J. Wang, S.-H. Li, Eur. Phys. J. B 89, 122 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, Berlin, 1983)Google Scholar
  30. 30.
    M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, 1984)Google Scholar
  31. 31.
    I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    L. Ryashko, I. Bashkirtseva, Front. Life Sci. 5, 141 (2011)CrossRefGoogle Scholar
  33. 33.
    R.K. Upadhyay, S.R.K. Iyengar, Int. J. Bifurc. Chaos 8, 1325 (1998)CrossRefGoogle Scholar
  34. 34.
    C. Letellier, M.A. Aziz-Alaoui, Chaos Solitons Fract. 13, 95 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    G.A.K. van Voorn, W. Bob, M. Kooi, P. Boer, Math. Biosci. 226, 120 (2010)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Dickinson, R.J. Gelinas, J. Comput. Phys. 21, 123 (1976)ADSCrossRefGoogle Scholar
  37. 37.
    A. Varma, M. Morbidelli, H. Wu, Parametric Sensitivity in Chemical Systems (Cambridge University Press, 1999)Google Scholar
  38. 38.
    G. ten Broeke, G. van Voorn, A. Ligtenberg, J. Artif. Soc. Social Simul. 19, 5 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Marsili-Libelli, S. Guerrizio, N. Checchi, Ecol. Modell. 165, 127 (2003)CrossRefGoogle Scholar
  40. 40.
    M. Ashyraliyev, Y. Fomekong-Nanfack, J.A. Kaandorp, J.G. Blom, FEBS J. 276, 1742 (2009)CrossRefGoogle Scholar
  41. 41.
    G.N. Mil’shtein, L.B. Ryashko, J. Appl. Math. Mech. 59, 47 (1995)MathSciNetCrossRefGoogle Scholar
  42. 42.
    I.A. Bashkirtseva, L.B. Ryashko, Math. Comput. Simul. 66, 55 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations