Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields

Regular Article
  • 64 Downloads

Abstract

Bandgap opening due to strain engineering is a key architect for making graphene’s optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    M. Barbier, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 81, 075438 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Soc. 102, 10451 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 7065 (2005)Google Scholar
  8. 8.
    V.B. Shenoy, C.D. Reddy, A. Ramasubramaniam, Y.W. Zhang, Phys. Rev. Lett. 101, 245501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    W. Bao, K. Myhro, Z. Zhao, Z. Chen, W. Jang, L. Jing, F. Miao, H. Zhang, C. Dames, C.N. Lau, Nano Lett. 12, 5470 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E. Cadelano, P.L. Palla, S. Giordano, L. Colombo, Phys. Rev. Lett. 102, 235502 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nano 4, 562 (2009)CrossRefGoogle Scholar
  13. 13.
    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, Nature 446, 60 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    L.L. Bonilla, A. Carpio, Phys. Rev. B 86, 195402 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Gibertini, A. Tomadin, M. Polini, A. Fasolino, M.I. Katsnelson, Phys. Rev. B 81, 125437 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A.L. Kitt, V.M. Pereira, A.K. Swan, B.B. Goldberg, Phys. Rev. B 85, 115432 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    A. Carpio, L.L. Bonilla, Phys. Rev. B 78, 085406 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    E. Cadelano, L. Colombo, Phys. Rev. B 85, 245434 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S. Prabhakar, R. Melnik, L.L. Bonilla, S. Badu, Phys. Rev. B 90, 205418 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.L. Bonilla, M. Ruiz-Garcia, Phys. Rev. B 93, 115407 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    L.L. Bonilla, A. Carpio, C. Gong, J.H. Warner, Phys. Rev. B 92, 155417 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    A. Fasolino, J.H. Los, M.I. Katsnelson, Nat. Mater. 6, 858 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    D.V. Tuan, F. Ortmann, D. Soriano, S.O. Valenzuela, S. Roche, Nat. Phys. 10, 857 (2014)CrossRefGoogle Scholar
  26. 26.
    M. Droth, G. Burkard, Phys. Rev. B 84, 155404 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    M. Droth, G. Burkard, Phys. Rev. B 87, 205432 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press Ltd., 1970)Google Scholar
  29. 29.
    F. de Juan, J.L. Mañes, M.A.H. Vozmediano, Phys. Rev. B 87, 165131 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    L. Meng, W.-Y. He, H. Zheng, M. Liu, H. Yan, W. Yan, Z.-D. Chu, K. Bai, R.-F. Dou, Y. Zhang, Z. Liu, J.-C. Nie, L. He, Phys. Rev. B 87, 205405 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    F. Guinea, M.I. Katsnelson, M.A.H. Vozmediano, Phys. Rev. B 77, 075422 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    V. Krueckl, K. Richter, Phys. Rev. B 85, 115433 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Prabhakar, R. Melnik, L. Bonilla, Phys. Rev. B 93, 115417 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    N. Levy, S.A. Burke, K.L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A.H.C. Neto, M.F. Crommie, Science 329, 544 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    F. Guinea, B. Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    J. Klinovaja, D. Loss, Phys. Rev. X 3, 011008 (2013)Google Scholar
  38. 38.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 73, 205408 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    R. Carrillo-Bastos, C. León, D. Faria, A. Latgé, E.Y. Andrei, N. Sandler, Phys. Rev. B 94, 125422 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    D.A. Gradinar, M. Mucha-Kruczyński, H. Schomerus, V.I. Fal’ko, Phys. Rev. Lett. 110, 266801 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Qi, D.A. Bahamon, V.M. Pereira, H.S. Park, D.K. Campbell, A.H.C. Neto, Nano Lett. 13, 2692 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    W.-Y. He, Y. Su, M. Yang, L. He, Phys. Rev. B 89, 125418 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    D.A. Bahamon, Z. Qi, H.S. Park, V.M. Pereira, D.K. Campbell, Nanoscale 7, 15300 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., New York, 2004)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Sanjay Prabhakar
    • 1
  • Roderick Melnik
    • 1
    • 2
  • Luis Bonilla
    • 3
  1. 1.The MS2Discovery Interdisciplinary Research Institute, M2NeT Laboratory, Wilfrid Laurier UniversityWaterlooCanada
  2. 2.BCAM-Basque Center for Applied MathematicsBilbaoSpain
  3. 3.Gregorio Millan Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de MadridLeganesSpain

Personalised recommendations