Entanglement distribution statistic in Andreev billiards

  • J. G. G. S. Ramos
  • A. F. Macedo-Junior
  • A. L. R. Barbosa
Regular Article
  • 5 Downloads

Abstract

We investigate statistical aspects of the entanglement production for open chaotic mesoscopic billiards in contact with superconducting parts, known as Andreev billiards. The complete distributions of concurrence and entanglement of formation are obtained by using the Altland–Zirnbauer symmetry classes of circular ensembles of scattering matrices, which complements previous studies in chaotic universal billiards belonging to other classes of random matrix theory. Our results show a unique and very peculiar behavior: the realization of entanglement in a Andreev billiard always results in non-separable state, regardless of the time reversal symmetry. The analytical calculations are supported by a numerical Monte Carlo simulation.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997) ADSCrossRefGoogle Scholar
  2. 2.
    P.A. Mello, N. Kumar, Quantum transport in mesoscopic systems: complexity and statistical fluctuations (Oxford University Press, New York, 2004) Google Scholar
  3. 3.
    T. Heinzel, Mesoscopic electronics in solid state nanostructures (Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 2007) Google Scholar
  4. 4.
    S. Gustavsson et al., Surf. Sci. Rep. 64, 191 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    J.G.G.S. Ramos, D. Bazeia, M.S. Hussein, C.H. Lewenkopf, Phys. Rev. Lett. 107, 176807 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    A.L.R. Barbosa, M.S. Hussein, J.G.G.S. Ramos, Phys. Rev. E 88, 010901(R) (2013) ADSCrossRefGoogle Scholar
  7. 7.
    B. Dietz, A. Richter, R. Samajda, Phys. Rev. E 92, 022904 (2015) ADSCrossRefGoogle Scholar
  8. 8.
    C.W.J. Beenakker, M. Kindermann, C.M. Marcus, A. Yacoby, in Fundamental problems of mesoscopic physics, NATO Science Series II, Vol. 154, edited by I.V. Lerner, B.L. Altshuler, Y. Gefen (Kluwer, Dordrecht, 2004) Google Scholar
  9. 9.
    M.L. Mehta, Random matrices (Academic, New York, 1991) Google Scholar
  10. 10.
    P. Jacquod, R.S. Whitney, J. Meair, M. Buttiker, Phys. Rev. B 86, 155118 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    H.U. Baranger, P.A. Mello, Phys. Rev. Lett. 73, 142 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Jalabert, J.-L. t Pichard, C.W.J. Beenakker, Europhys. Lett. 27, 255 (1994) ADSCrossRefGoogle Scholar
  13. 13.
    M.S.M. Barros, A.J. Nascimento Junior, A.F. Macedo-Junior, J.G.G.S. Ramos, A.L.R. Barbosa, Phys. Rev. B 88, 245133 (2014) ADSCrossRefGoogle Scholar
  14. 14.
    A.F. Macedo Junior, A.M.S. Macêdo, Phys. Rev. B 77, 165313 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    A.F. Macedo-Junior, A.M.S. Macêdo, Phys. Rev. B 66, 041307 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Nascimento Júnior, M.S.M. Barros, J.G.G.S. Ramos, A.L.R. Barbosa, Eur. Phys. J. B 89, 194 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Dahlhaus, B. Béri, C.W.J. Beenakker, Phys. Rev. B 82, 014586 (2010) ADSGoogle Scholar
  18. 18.
    J.J. Sakurai, Modern quantum mechanics (Addison-Wesley Publishing Company, New York Dom Mills, Ontario, 1994) Google Scholar
  19. 19.
    G. Alber, T. Beth, P. Horodecki, R. Horodecki, M. Rötteler, H. Weinfurter, R. Werner, A. Zeilinger, in Quantum information (Springer, Berlin, 2001), Vol. 173 Google Scholar
  20. 20.
    V.A. Gopar, D. Frustaglia, Phys. Rev. B 77, 153403 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    F.A.G. Almeida, A.M.C. Souza, Phys. Rev. B 82, 115422 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    D. Villamaina, P. Vivo, Phys. Rev. B 88, 041301 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    A. Jarosz, P. Vidal, E. Kanzieper, Phys. Rev. B 91, 180203 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    S. Rodriguez-Perez, M. Novaes, Phys. Rev. B 85, 205414 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    J.G.G.S. Ramos, I.M.L. da Silva, A.L.R. Barbosa, Phys. Rev. B 90, 245107 (2014) ADSCrossRefGoogle Scholar
  26. 26.
    A. Altland, M.R. Zirnbauer, Phys. Rev. B 55, 1142 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    S. Rodriguez-Perez, M. Novaes, Braz. J. Phys. 45, 532 (2015) ADSCrossRefGoogle Scholar
  28. 28.
    C.W.J. Beenakker, C. Emary, M. Kindermann, J.L. Van Velsen, Phys. Rev. Lett. 91, 147901 (2003) ADSCrossRefGoogle Scholar
  29. 29.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    N.W. Ashcrof, N.D. Mermim, Solid state physics (Saunders College Publishing, USA, 1976) Google Scholar
  31. 31.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • J. G. G. S. Ramos
    • 1
  • A. F. Macedo-Junior
    • 2
  • A. L. R. Barbosa
    • 2
  1. 1.Departamento de Física, Universidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Departamento de Física, Universidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations