Fractality and degree correlations in scale-free networks

Abstract

Fractal scale-free networks are empirically known to exhibit disassortative degree mixing. It is, however, not obvious whether a negative degree correlation between nearest neighbor nodes makes a scale-free network fractal. Here we examine the possibility that disassortativity in complex networks is the origin of fractality. To this end, maximally disassortative (MD) networks are prepared by rewiring edges while keeping the degree sequence of an initial uncorrelated scale-free network. We show that there are many MD networks with different topologies if the degree sequence is the same with that of the (u,v)-flower but most of them are not fractal. These results demonstrate that disassortativity does not cause the fractal property of networks. In addition, we suggest that fractality of scale-free networks requires a long-range repulsive correlation, in the sense of the shortest path distance, in similar degrees.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    ADS  Article  Google Scholar 

  4. 4.

    A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    M.E.J. Newman, Phys. Rev. E 67, 026126 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    F. Kawasaki, K. Yakubo, Phys. Rev. E 82, 036113 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  9. 9.

    C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    L.K. Gallos, C. Song, H.A. Makse, Phys. Rev. Lett. 100, 248701 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    L.K. Gallos, H.A. Makse, M. Sigman, Proc. Natl. Acad. Sci. USA 109, 2825 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    A. Watanabe, S. Mizutaka, K. Yakubo, J. Phys. Soc. Jpn 84, 114003 (2015)

    ADS  Article  Google Scholar 

  13. 13.

    S.-H. Yook, F. Radicchi, H. Meyer-Ortmanns, Phys. Rev. E 72, 045105 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    C. Song, S. Havlin, H.A. Makse, Nat. Phys. 2, 275 (2006)

    Article  Google Scholar 

  15. 15.

    H.D. Rozenfeld, S. Havlin, D. ben-Avraham, New J. Phys. 9, 175 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    J.S. Kim, B. Kahng, D. Kim, Phys. Rev. E 79, 067103 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    J. Menche, A. Valleriani, R. Lipowsky, Phys. Rev. E 81, 046103 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    C.M. Schneider, A.A. Moreira, J.S. Andrade, S. Havlin, H.J. Herrmann, Proc. Natl. Acad. Sci. USA 108, 3838 (2011)

    ADS  Article  Google Scholar 

  19. 19.

    S. Johnson, J.J. Torres, J. Marro, M.A. Muñoz, Phys. Rev. Lett. 104, 108702 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 65, 066122 (2002)

    ADS  Article  Google Scholar 

  21. 21.

    S. Maslov, K. Sneppen, Science 296, 910 (2002)

    ADS  Article  Google Scholar 

  22. 22.

    A. Bekessy, P. Bekessy, J. Komlos, Stud. Sci. Math. Hungar. 7, 343 (1972)

    Google Scholar 

  23. 23.

    M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995)

    Article  Google Scholar 

  24. 24.

    M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    ADS  Article  Google Scholar 

  25. 25.

    S.N. Dorogovtsev, A.L. Ferreira, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 81, 031135 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    N. Litvak, R. van der Hofstad, Phys. Rev. E 87, 022801 (2013)

    ADS  Article  Google Scholar 

  27. 27.

    M. Raschke, M. Schläpfer, R. Nibali, Phys. Rev. E 82, 037102 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    W.-Y. Zhang, Z.-W. Wei, B.-H. Wang, X.-P. Han, Physica A 451, 440 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    L. Donetti, P.I. Hurtado, M.A. Muñoz, Phys. Rev. Lett. 95, 188701 (2005)

    ADS  Article  Google Scholar 

  30. 30.

    T. Nishikawa, A.E. Motter, Y.-C. Lai, F.C. Hoppensteadt, Phys. Rev. E 66, 046139 (2002)

    ADS  Article  Google Scholar 

  31. 31.

    S.K. Dwivedi, S. Jalan, Phys. Rev. E 92, 022802 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    R.C. Wilson, P. Zhu, Patt. Recog. 41, 2833 (2008)

    Article  Google Scholar 

  33. 33.

    J. Gu, B. Hua, S. Liu, Discrete Appl. Math. 190-191, 56 (2015)

    Article  Google Scholar 

  34. 34.

    A. Barvinok, J.A. Hartigan, Random Struct. Algor. 42, 301 (2013)

    Article  Google Scholar 

  35. 35.

    C. Song, L.K. Gallos, S. Havlin, H.A. Makse, J. Stat. Mech.: Theory Exp., P03006 (2007)

  36. 36.

    http://snap.stanford.edu/data

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kousuke Yakubo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujiki, Y., Mizutaka, S. & Yakubo, K. Fractality and degree correlations in scale-free networks. Eur. Phys. J. B 90, 126 (2017). https://doi.org/10.1140/epjb/e2017-80031-x

Download citation

Keywords

  • Statistical and Nonlinear Physics