Analytical expressions for momentum autocorrelation function of a classic diatomic chain

Regular Article
  • 33 Downloads

Abstract

We use recurrence relations method to study a classical harmonic diatomic chain. The momentum autocorrelation function results from contributions of acoustic and optical branches. By use of convolution theorem, analytical expressions for the acoustic and optical branches are derived as even-order Bessel function expansions. The expansion coefficients are given in terms of integrals of real and complex elliptic functions for the acoustic and optical branches, respectively. Double convolution results respectively in integrals of trigonometric and hyperbolic functions for expansion coefficients of acoustic and optical branches.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.W. Montroll, R.B. Potts, Phys. Rev. 100, 525 (1955) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    P. Mazur, E.W. Montroll, R.B. Potts, J. Wash. Acad. Sci. 46, 2 (1956) Google Scholar
  3. 3.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss, in Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963), p. 179 Google Scholar
  4. 4.
    P. Dean, J. Inst. Math. Appl. 3, 98 (1967) CrossRefGoogle Scholar
  5. 5.
    R.F. Fox, Phys. Rev. A 27, 3216 (1983) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    L.S. Garcia-Colin, J. Stat. Phys. 7, 243 (1973) ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Baker Jr., A.J. Sievers, Rev. Mod. Phys. 47, S1 (1975) CrossRefGoogle Scholar
  8. 8.
    M.H. Lee, Phys. Rev. Lett. 49, 1072 (1982) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.H. Lee, J. Math. Phys. 24, 2512 (1983) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.H. Lee, J. Hong, J. Florencio Jr., Physica Scripta T19, 498 (1987) ADSCrossRefGoogle Scholar
  11. 11.
    U. Balucani, M.H. Lee, V. Tognetti, Phys. Rep. 373, 409 (2003) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Florencio Jr., M.H. Lee, Phys. Rev. A 31, 3231 (1985) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    M.H. Lee, J. Florencio Jr., J. Hong, J. Phys. A 22, L331 (1989) ADSCrossRefGoogle Scholar
  14. 14.
    M.B. Yu, J.H. Kim, M.H. Lee, J. Lumin. 45, 144 (1990) CrossRefGoogle Scholar
  15. 15.
    M.B. Yu, Eur. Phys. J. B 86, 57 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Yu, Phys. Lett. A 380, 3583 (2016) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M.H. Lee, Symmetry 8, 22 (2016) CrossRefGoogle Scholar
  18. 18.
    M.B. Yu, Eur. Phys. J. B 85, 379 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    M.B. Yu, Physica A 398, 252 (2014) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M.B. Yu, Physica A 438, 469 (2015) ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A.V. Mokshin, R.M. Yulmetyev, P. Hänggi, Phys. Rev. Lett. 95, 200601 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    A. Wierling, Eur. Phys. J. B 85, 20 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    S. Sen, M. Long, J. Appl. Phys. 73, 5474 (1993) ADSCrossRefGoogle Scholar
  24. 24.
    S. Sen, T.D. Blersch, Physica A 253, 178 (1998) ADSCrossRefGoogle Scholar
  25. 25.
    A.V. Mokshin, R.M. Yulmetyev, P. Hänggi, Phys. Rev. Lett. 95, 200601 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    E.M. Silva, Phys. Rev. E 92, 042146 (2015) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    P.R.C. Guimaraes, J.A. Placak, O.F. de Alcantara Bonfim, J. Florencio, Phys. Rev. E 92, 042115 (2015) ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of Integrals, Series and Products, 7th edn. (A&P, 2007), p. 34 Google Scholar
  29. 29.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of Integrals, Series and Products, 7th edn. (A&P, 2007), p. 625 Google Scholar
  30. 30.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of Integrals, Series and Products, 7th edn. (A&P, 2007), p. 152 Google Scholar
  31. 31.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of Integrals, Series and Products, 7th edn. (A&P, 2007), p. 110 Google Scholar
  32. 32.
    I.S. Gradsgteyn, I.N. Ryzhik, in Table of Integrals, Series and Products, 7th edn. (A&P, 2007), p. 29 Google Scholar
  33. 33.
    G.J. Tee, New Zealand J. Math. 41, 83 (2011) MathSciNetGoogle Scholar
  34. 34.
    L.M. Milne-Thomson, Jacobian Elliptic Functions and Theta Functions, No. 16, 17, p. 569, in Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, Appl. Math. Ser., edited by M. Abramowitz, I.A. Stegun (National Bureau of Standards, Washington, D.C., 1964), Vol. 55 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.191 Waterton Lakes Ave.Las VegasUSA

Personalised recommendations