Skip to main content
Log in

Transverse discrete breathers in unstrained graphene

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Dolgov, Sov. Phys. Solid State 28, 907 (1986)

    Google Scholar 

  2. A.J. Sievers, S. Takeno, Phys. Rev. Lett. 61, 970 (1988)

    Article  ADS  Google Scholar 

  3. J.B. Page, Phys. Rev. B 41, 7835 (1990)

    Article  ADS  Google Scholar 

  4. S. Flach, A.V. Gorbach, Phys. Rep. 467, 1 (2008)

    Article  ADS  Google Scholar 

  5. D. Campbell, S. Flach, Yu.S. Kivshar, Physics Today 57, 43 (2004)

    Article  ADS  Google Scholar 

  6. S.V. Dmitriev, E.A. Korznikova, J.A. Baimova, M.G. Velarde, Physics-Uspekhi 59, 446 (2016)

    Article  ADS  Google Scholar 

  7. M.G. Velarde, A.P. Chetverikov, W. Ebeling, S.V. Dmitriev, V.D. Lakhno, Eur. Phys. J. B 89, 233 (2016)

    Article  ADS  Google Scholar 

  8. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 89, 196 (2016)

    Article  ADS  Google Scholar 

  9. A.P. Chetverikov, W. Ebeling, V.D. Lakhno, A.S. Shigaev, M.G. Velarde, Eur. Phys. J. B 89, 101 (2016)

    Article  ADS  Google Scholar 

  10. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Entropy 18, 92 (2016)

    Article  ADS  Google Scholar 

  11. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 88, 202 (2015)

    Article  ADS  Google Scholar 

  12. A.P. Chetverikov, L. Cruzeiro, W. Ebeling, M.G. Velarde, Springer Series Mate. 221, 267 (2015)

    Article  Google Scholar 

  13. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. Special Topics 222, 2531 (2013)

    Article  ADS  Google Scholar 

  14. S.V. Dmitriev, A.P. Chetverikov, M.G. Velarde, Phys. Status Solidi B 252, 1682 (2015)

    Article  ADS  Google Scholar 

  15. S.V. Dmitriev, Micromechanics and Molecular Physics 1, 1630001 (2016)

    Article  Google Scholar 

  16. J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015)

    Google Scholar 

  17. I.P. Lobzneko, I. Evazzade, M.R. Roknabadi, R.I. Makhmutova, S.V. Dmitriev, Lett. Mater. 6, 152 (2016)

    Article  Google Scholar 

  18. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Europhys. Lett. 80, 40008 (2007)

    Article  ADS  Google Scholar 

  19. E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, Europhys. Lett. 102, 60004 (2013)

    Article  ADS  Google Scholar 

  20. E.A. Korznikova, Y.A. Baimova, S.V. Dmitriev, R.R. Mulyukov, A.V. Savin, J. Exp. Theor. Phys. Lett. 96, 222 (2012)

    Article  Google Scholar 

  21. J.A. Baimova, S.V. Dmitriev, K. Zhou, Europhys. Lett. 100, 36005 (2012)

    Article  ADS  Google Scholar 

  22. L.Z. Khadeeva, S.V. Dmitriev, Yu.S. Kivshar, J. Exp. Theor. Phys. Lett. 94, 539 (2011)

    Article  Google Scholar 

  23. Y. Doi, A. Nakatani, Procedia Engineering 10, 3393 (2011)

    Article  Google Scholar 

  24. Y. Doi, A. Nakatani, J. Solid Mechan. Mater. Eng. 6, 71 (2012)

    Article  ADS  Google Scholar 

  25. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Europhys. Lett. 80, 40008 (2007)

    Article  ADS  Google Scholar 

  26. M. Vandescuren, P. Hermet, V. Meunier, L. Henrard, Ph. Lambin, Phys. Rev. B 78, 195401 (2008)

    Article  ADS  Google Scholar 

  27. I.P. Lobzenko, G.M. Chechin, G.S. Bezuglova, Yu.A. Baimova, E.A. Korznikova, S.V. Dmitriev, Phys. Solid State, 58, 633 (2016)

    Article  ADS  Google Scholar 

  28. A. Fraile, E.N. Koukaras, K. Papagelis, N. Lazarides, G.P. Tsironis, Chaos Solitons Fractals 87, 262 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. V. Hizhnyakov, M. Klopov, A. Shelkan, Phys. Lett. A 380, 1075 (2016)

    Article  ADS  Google Scholar 

  30. V. Hizhnyakov, A. Shelkan, M. Haas, M. Klopov, Lett. Mater. 6, 61 (2016)

    Article  Google Scholar 

  31. Y. Kinoshita, Y. Yamayose, Y. Doi, A. Nakatani, T. Kitamura, Phys. Rev. B 77, 024307 (2008)

    Article  ADS  Google Scholar 

  32. A.V. Savin, Y.S. Kivshar, Europhys. Lett. 82, 66002 (2008)

    Article  ADS  Google Scholar 

  33. T. Shimada, D. Shirasaki, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Physica D 239, 407 (2010)

    Article  ADS  Google Scholar 

  34. I. Akimoto, K. Kanno, J. Phys. Soc. Jpn 71, 630 (2002)

    Article  ADS  Google Scholar 

  35. T. Shimada, D. Shirasaki, T. Kitamura, Phys. Rev. B 81, 035401 (2010)

    Article  ADS  Google Scholar 

  36. Y. Doi, A. Nakatani, Lett. Mater. 6, 49 (2016)

    Article  Google Scholar 

  37. A.V. Savin, Y.S. Kivshar, Phys. Rev. B 85, 125427 (2012)

    Article  ADS  Google Scholar 

  38. B. Liu, J.A. Baimova, K. Zhou, S.V. Dmitriev, X. Wang, H. Zhu, J. Phys. D 46, 305302 (2013)

    Article  Google Scholar 

  39. G.M. Chechin, S.V. Dmitriev, I.P. Lobzenko, D.S. Ryabov, Phys. Rev. B 90, 045432 (2014)

    Article  ADS  Google Scholar 

  40. Yu.A. Baimova, R.T. Murzaev, I.P. Lobzenkob, S.V. Dmitriev, K. Zhou, J. Exp. Theor. Phys. 122, 869 (2016)

    Article  ADS  Google Scholar 

  41. M. Kimura, A. Mitani, S. Doi, Lett. Mater. 6, 22 (2016)

    Article  ADS  Google Scholar 

  42. M. Kimura, A. Mitani, S. Doi, Nonlinear Theory and Its Applications IEICE, in press

  43. E.A. Korznikova, S.Yu. Fomin, E.G. Soboleva, S.V. Dmitriev, J. Exp. Theor. Phys. Lett. 103, 277 (2016)

    Article  Google Scholar 

  44. I.P. Lobzenko, P.V. Lobzenko, A.M. Bayazitov, A.P. Chetverikov, R.I. Machmutova, A.A. Kistanov, Lett. Mater. 6, 304 (2016)

    Article  Google Scholar 

  45. G. Chechin, D. Ryabov, S. Shcherbinin, Lett. Mater. 6, 9 (2016)

    Article  Google Scholar 

  46. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  47. A.V. Savin, Yu.S. Kivshar, B. Hu, Phys. Rev. B 82, 195422 (2010)

    Article  ADS  Google Scholar 

  48. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Moradi Marjaneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barani, E., Lobzenko, I.P., Korznikova, E.A. et al. Transverse discrete breathers in unstrained graphene. Eur. Phys. J. B 90, 38 (2017). https://doi.org/10.1140/epjb/e2017-70751-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70751-2

Keywords

Navigation