Density functional study of Pu2C3

Regular Article


The structural, magnetic, electronic, vibrational, thermodynamic and elastic properties of plutonium sesquicarbide (Pu2C3) are investigated based on density functional theory. The use of the Hubbard term to describe the 5f electrons of plutonium is discussed according the lattice parameters and magnetism. The calculated lattice constants, magnetism and density of states agree well with the experimental data or other theoretical calculations. The Pu-C bonds of Pu2C3 have a mixture of covalent character and ionic character, while covalent character is stronger than ionic character. The phonon frequencies and the assignment of infrared-active, Raman-active and silent modes at Γ point are obtained. Furthermore, the enthalpy difference H-H298, entropy S, heat capacity and linear thermal expansion coefficient α of Pu2C3 have been calculated and compared with the available data. Lastly, the calculated elastic properties predict that Pu2C3 is ductile metal. In addition, the effect of spin-orbit coupling on the structural, magnetic, and electronic properties of Pu2C3 has been discussed. We hope that our results can provide a useful reference for further theoretical and experimental research on Pu2C3.


Solid State and Materials 


  1. 1.
    D. Butler, Nature 429, 238 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    D. Srivastava, S.P. Garg, G.L. Goswami, J. Nucl. Mater. 161, 44 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    R.N.R. Mulford, F.H. Ellinger, G.S. Hendrix, E.D. Albrecht, Plutonium 1960 (Cleaver-Hume Press Ltd., London, 1961) p. 301Google Scholar
  4. 4.
    W.H. Zachariasen, Acta Cryst. 5, 17 (1952)CrossRefGoogle Scholar
  5. 5.
    J.L. Green, G.P. Arnold, J.A. Leary, N.G. Nereson, J. Nucl. Mater. 34, 281 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    C.E. Holley, Jr., The Thermodynamic Properties of Uranium and Plutonium Carbides, Los Alamos Scientific Laboratory, Los Alamos, NM, LADC-5487 (1962)Google Scholar
  7. 7.
    M.H. Rand, Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids (IAEA, Vienna, 1965), Vol. 11, p. 603Google Scholar
  8. 8.
    J.B. Moser, O.L. Kruger, Thermal Diffusivity of Actinide Compounds, Proceedings of the Seventh Conference on Thermal Conductivity, National Bureau of Standards Special Publication 302 (1968)Google Scholar
  9. 9.
    T. Gouder, L. Havela, A.B. Shick, F. Huber, F. Wastin, J. Rebizant, J. Phys.: Condens. Matter 19, 476201 (2007)ADSGoogle Scholar
  10. 10.
    L. Havela, A. Shick, T. Gouder, J. Appl. Phys. 105, 07E130 (2009)CrossRefGoogle Scholar
  11. 11.
    B.Y. Ao, R.Z. Qiu, H.Y. Lu, X.Q. Ye, P. Shi, P.S. Chen, X.L. Wang, J. Phys. Chem. C 119, 101 (2015)CrossRefGoogle Scholar
  12. 12.
    X.D. Wen, R.L. Martin, G.E. Scueria, S.P. Rudin, E.R. Batista, J. Phys. Chem. C 117, 13122 (2013)CrossRefGoogle Scholar
  13. 13.
    B. Sun, P. Zhang, X.G. Zhao, J. Chem. Phys. 128, 084705 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    H. Wang, K. Konashi, J. Alloys Compd. 53, 533 (2012)Google Scholar
  15. 15.
    H. Nakamura, M. Machida, M. Kato, Phys. Rev. B 82, 155131 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    P.E. Bloechl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    S.Y. Savrasov, G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    G. Kresse, O. Lebacq, VASP manual, see
  21. 21.
    P. Giannozzi, S. de Gironcoli, Phys. Rev. B 43, 7231 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    X. Gonze, C. Lee, Phys. Rev. B 55, 10355 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990)Google Scholar
  24. 24.
    S.Q. Wang, H.Q. Ye, J. Phys.: Condens. Matter 15, 5307 (2003)ADSGoogle Scholar
  25. 25.
    P. Gopal, N.A. Spaldin, Phys. Rev. B 74, 094418 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    F.L. Oetting, The Chemical Thermodynamic Properties of Plutonium Compounds (The Dow Company, Rochy Flats Division, Golden, Colorado, 1996)Google Scholar
  27. 27.
    A. Siegel, K. Parlinski, U.D. Wdowik, Phys. Rev. B 74, 104116 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M.H. Rand, O. Kubachewski, The Thermochemical Properties of Uranium Compounds (Atomic Energy Research Establishment, Harwell, Berkshire, AERER3487, 1960)Google Scholar
  29. 29.
    L. Pintschovius, J.M. Bassat, P. Odier, F. Gervais, G. Chevrier, W. Reichardt, F. Gompf, Phys. Rev. B 40, 2229 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    R. Wang, S.F. Wang, X.Z. Wu, T.T. Song, Int. J. Thermophys. 33, 303 (2012)ADSGoogle Scholar
  31. 31.
    A.T. Petit, P.L. Dulong, Ann. Chim. Phys. (in French) 10, 395 (1819)Google Scholar
  32. 32.
    P.G. Pallmer, Thermal Expansion of Plutonium Carbides, HW-72245 (1962)Google Scholar
  33. 33.
    M.H. Rand, R.S. Street, High Temperature X-ray Diffraction Studies, Part 3, Plutonium Nitride, Plutonium Sesquicarbide, AERE-M-973 (1962)Google Scholar
  34. 34.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)CrossRefGoogle Scholar
  35. 35.
    K.T. Moore, G. van der Laan, Rev. Mod. Phys. 81, 235 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    X.D. Wen, R.L. Martin, L.E. Roy, G.E. Scuseria, S.P. Rudin, E.R. Batista, T.M. McCleskey, J.J. Joyce, B.L. Scott, E. Bauerd, T. Durakiewicze, J. Chem. Phys. 137, 154707 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Chongqing Jiaotong UniversityChongqingP.R. China
  2. 2.Institute of Atomic and Molecular Physics, Sichuan UniversityChengduP.R. China
  3. 3.Institute of Finance & TradeChongqingP.R. China
  4. 4.Science and Technology on Surface Physics and Chemistry LaboratoryMianyangP.R. China

Personalised recommendations