Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study

  • David Kammerlander
  • Alberto Castro
  • Miguel A. L. Marques
Regular Article


How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.


Computational Methods 


  1. 1.
    L.A. MacColl, Phys. Rev. 40, 621 (1932)ADSCrossRefGoogle Scholar
  2. 2.
    R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Landsman, U. Keller, Phys. Rep. 547, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    M.F. Kling, M.J.J. Vrakking, Ann. Rev. Phys. Chem. 59, 463 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Krausz, M.I. Stockman, Nat. Photon. 8, 205 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    R. Pazourek, S. Nagele, J. Burgdörfer, Rev. Mod. Phys. 87, 765 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, T. Brabec, Phys. Rev. Lett. 88, 173904 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J. Itatani, F. Quéré, G.L. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88, 173903 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    C.M. Maharjan, A.S. Alnaser, X.M. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I.V. Litvinyuk, C.L. Cocke, Phys. Rev. A 72, 041403 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttiker, U. Keller, Science 322, 1525 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dorner, U. Keller, Nat. Phys. 7, 428 (2011)CrossRefGoogle Scholar
  14. 14.
    A.N. Pfeiffer, C. Cirelli, M. Smolarski, U. Keller, Chem. Phys. 414, 84 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Landsman, U. Keller, J. Phys. B: At. Mol. Opt. Phys. 47, 204024 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    H. Ni, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 117, 023002 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A. Zielinski, A. Scrinzi, H.G. Muller, S. Sukiasyan, M. Ivanov et al., Nat. Phys. 11, 503 (2015)CrossRefGoogle Scholar
  18. 18.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  19. 19.
    M. Büttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    L. Eisenbud, Ph.D. thesis, Princeton University, 1948Google Scholar
  21. 21.
    E.P. Wigner, Phys. Rev. 98, 145 (1955)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    F.T. Smith, Phys. Rev. 118, 349 (1960)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    C. Brif, R. Chakrbarti, H. Rabitz, New J. Phys. 12, 075008 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    J. Werschnik, E.K.U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, Phys. Rev. A 75, 042308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    K.W. Moore Tibbetts, C. Brif, M.D. Grace, A. Donovan, D.L. Hocker, T.S. Ho, R.B. Wu, H. Rabitz, Phys. Rev. A 86, 062309 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    A. Castro, E. Räsänen, A. Rubio, E.K.U. Gross, EPL 87, 53001 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M. Hellgren, E. Räsänen, E.K.U. Gross, Phys. Rev. A 88, 013414 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Censor, Appl. Math. Opt. 4, 41 (1977)CrossRefGoogle Scholar
  31. 31.
    L. Bonacina, J. Extermann, A. Rondi, V. Boutou, J.P. Wolf, Phys. Rev. A 76, 023408 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)ADSCrossRefGoogle Scholar
  33. 33.
    K. Boucke, H. Schmitz, H.J. Kull, Phys. Rev. A 56, 763 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    J. Wassaf, V.V. Véniard, R. Taïeb, A. Maquet, Phys. Rev. A 67, 053405 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    N. Moiseyev, H.J. Korsch, Phys. Rev. A 44, 7797 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)ADSCrossRefGoogle Scholar
  37. 37.
    K. Krieger, A. Castro, E. Gross, Chem. Phys. 391, 50 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    M.A. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comp. Phys. Commun. 151, 60 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Physica Status Solidi B 243, 2465 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik et al., J. Phys.: Cond. Matter 24, 233202 (2012)ADSGoogle Scholar
  41. 41.
    R. Storn, K. Price, J. Global Optim. 116, 341 (1997)CrossRefGoogle Scholar
  42. 42.
    A. Fraser, Aust. J. Biol. Sci. 10, 484 (1957)CrossRefGoogle Scholar
  43. 43.
    M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996)Google Scholar
  44. 44.
    B.V. Babu, P.G. Chakole, J.H.S. Mubeen, Chem. Eng. Sci. 60, 4822 (2005)CrossRefGoogle Scholar
  45. 45.
    E. Mezura-Montes, M. Reyes-Sierra, C.A.C. Coello, Advances in Differential Evolution, Vol. 143 of Studies in Computational Intelligence Series (Springer Verlag, 2008)Google Scholar
  46. 46.
    M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius et al., Nature 446, 627 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1964)MathSciNetGoogle Scholar
  48. 48.
    P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance
  2. 2.ARAID Foundation, Edificio CEEI, María Luna 1ZaragozaSpain
  3. 3.Institute for Biocomputation and Physics of Complex Systems of the University of ZaragozaZaragozaSpain
  4. 4.Institut für Physik, Martin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations