Skip to main content

Advertisement

Log in

Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. MacColl, Phys. Rev. 40, 621 (1932)

    Article  ADS  Google Scholar 

  2. R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217 (1994)

    Article  ADS  Google Scholar 

  3. A.S. Landsman, U. Keller, Phys. Rep. 547, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  4. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  5. M.F. Kling, M.J.J. Vrakking, Ann. Rev. Phys. Chem. 59, 463 (2007)

    Article  ADS  Google Scholar 

  6. A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006)

    Article  Google Scholar 

  7. F. Krausz, M.I. Stockman, Nat. Photon. 8, 205 (2014)

    Article  ADS  Google Scholar 

  8. R. Pazourek, S. Nagele, J. Burgdörfer, Rev. Mod. Phys. 87, 765 (2015)

    Article  ADS  Google Scholar 

  9. M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, T. Brabec, Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  10. J. Itatani, F. Quéré, G.L. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  Google Scholar 

  11. C.M. Maharjan, A.S. Alnaser, X.M. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I.V. Litvinyuk, C.L. Cocke, Phys. Rev. A 72, 041403 (2005)

    Article  ADS  Google Scholar 

  12. P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttiker, U. Keller, Science 322, 1525 (2008)

    Article  ADS  Google Scholar 

  13. A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dorner, U. Keller, Nat. Phys. 7, 428 (2011)

    Article  Google Scholar 

  14. A.N. Pfeiffer, C. Cirelli, M. Smolarski, U. Keller, Chem. Phys. 414, 84 (2013)

    Article  ADS  Google Scholar 

  15. A.S. Landsman, U. Keller, J. Phys. B: At. Mol. Opt. Phys. 47, 204024 (2014)

    Article  ADS  Google Scholar 

  16. H. Ni, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 117, 023002 (2016)

    Article  ADS  Google Scholar 

  17. L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A. Zielinski, A. Scrinzi, H.G. Muller, S. Sukiasyan, M. Ivanov et al., Nat. Phys. 11, 503 (2015)

    Article  Google Scholar 

  18. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  19. M. Büttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)

    Article  ADS  Google Scholar 

  20. L. Eisenbud, Ph.D. thesis, Princeton University, 1948

  21. E.P. Wigner, Phys. Rev. 98, 145 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  22. F.T. Smith, Phys. Rev. 118, 349 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Brif, R. Chakrbarti, H. Rabitz, New J. Phys. 12, 075008 (2010)

    Article  ADS  Google Scholar 

  24. J. Werschnik, E.K.U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007)

    Article  ADS  Google Scholar 

  25. A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, Phys. Rev. A 75, 042308 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)

    Article  ADS  Google Scholar 

  27. K.W. Moore Tibbetts, C. Brif, M.D. Grace, A. Donovan, D.L. Hocker, T.S. Ho, R.B. Wu, H. Rabitz, Phys. Rev. A 86, 062309 (2012)

    Article  ADS  Google Scholar 

  28. A. Castro, E. Räsänen, A. Rubio, E.K.U. Gross, EPL 87, 53001 (2009)

    Article  ADS  Google Scholar 

  29. M. Hellgren, E. Räsänen, E.K.U. Gross, Phys. Rev. A 88, 013414 (2013)

    Article  ADS  Google Scholar 

  30. Y. Censor, Appl. Math. Opt. 4, 41 (1977)

    Article  Google Scholar 

  31. L. Bonacina, J. Extermann, A. Rondi, V. Boutou, J.P. Wolf, Phys. Rev. A 76, 023408 (2007)

    Article  ADS  Google Scholar 

  32. G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)

    Article  ADS  Google Scholar 

  33. K. Boucke, H. Schmitz, H.J. Kull, Phys. Rev. A 56, 763 (1997)

    Article  ADS  Google Scholar 

  34. J. Wassaf, V.V. Véniard, R. Taïeb, A. Maquet, Phys. Rev. A 67, 053405 (2003)

    Article  ADS  Google Scholar 

  35. N. Moiseyev, H.J. Korsch, Phys. Rev. A 44, 7797 (1991)

    Article  ADS  Google Scholar 

  36. L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)

    Article  ADS  Google Scholar 

  37. K. Krieger, A. Castro, E. Gross, Chem. Phys. 391, 50 (2011)

    Article  ADS  Google Scholar 

  38. M.A. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comp. Phys. Commun. 151, 60 (2003)

    Article  ADS  Google Scholar 

  39. A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Physica Status Solidi B 243, 2465 (2006)

    Article  ADS  Google Scholar 

  40. X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik et al., J. Phys.: Cond. Matter 24, 233202 (2012)

    ADS  Google Scholar 

  41. R. Storn, K. Price, J. Global Optim. 116, 341 (1997)

    Article  Google Scholar 

  42. A. Fraser, Aust. J. Biol. Sci. 10, 484 (1957)

    Article  Google Scholar 

  43. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996)

  44. B.V. Babu, P.G. Chakole, J.H.S. Mubeen, Chem. Eng. Sci. 60, 4822 (2005)

    Article  Google Scholar 

  45. E. Mezura-Montes, M. Reyes-Sierra, C.A.C. Coello, Advances in Differential Evolution, Vol. 143 of Studies in Computational Intelligence Series (Springer Verlag, 2008)

  46. M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius et al., Nature 446, 627 (2007)

    Article  ADS  Google Scholar 

  47. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1964)

    MathSciNet  Google Scholar 

  48. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  49. S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kammerlander, D., Castro, A. & Marques, M.A.L. Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study. Eur. Phys. J. B 90, 91 (2017). https://doi.org/10.1140/epjb/e2017-70741-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70741-4

Keywords

Navigation