Abstract
How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.
Similar content being viewed by others
References
L.A. MacColl, Phys. Rev. 40, 621 (1932)
R. Landauer, T. Martin, Rev. Mod. Phys. 66, 217 (1994)
A.S. Landsman, U. Keller, Phys. Rep. 547, 1 (2015)
F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)
M.F. Kling, M.J.J. Vrakking, Ann. Rev. Phys. Chem. 59, 463 (2007)
A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B: At. Mol. Opt. Phys. 39, R1 (2006)
F. Krausz, M.I. Stockman, Nat. Photon. 8, 205 (2014)
R. Pazourek, S. Nagele, J. Burgdörfer, Rev. Mod. Phys. 87, 765 (2015)
M. Kitzler, N. Milosevic, A. Scrinzi, F. Krausz, T. Brabec, Phys. Rev. Lett. 88, 173904 (2002)
J. Itatani, F. Quéré, G.L. Yudin, M.Y. Ivanov, F. Krausz, P.B. Corkum, Phys. Rev. Lett. 88, 173903 (2002)
C.M. Maharjan, A.S. Alnaser, X.M. Tong, B. Ulrich, P. Ranitovic, S. Ghimire, Z. Chang, I.V. Litvinyuk, C.L. Cocke, Phys. Rev. A 72, 041403 (2005)
P. Eckle, A.N. Pfeiffer, C. Cirelli, A. Staudte, R. Dörner, H.G. Muller, M. Büttiker, U. Keller, Science 322, 1525 (2008)
A.N. Pfeiffer, C. Cirelli, M. Smolarski, R. Dorner, U. Keller, Nat. Phys. 7, 428 (2011)
A.N. Pfeiffer, C. Cirelli, M. Smolarski, U. Keller, Chem. Phys. 414, 84 (2013)
A.S. Landsman, U. Keller, J. Phys. B: At. Mol. Opt. Phys. 47, 204024 (2014)
H. Ni, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 117, 023002 (2016)
L. Torlina, F. Morales, J. Kaushal, I. Ivanov, A. Kheifets, A. Zielinski, A. Scrinzi, H.G. Muller, S. Sukiasyan, M. Ivanov et al., Nat. Phys. 11, 503 (2015)
L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)
M. Büttiker, R. Landauer, Phys. Rev. Lett. 49, 1739 (1982)
L. Eisenbud, Ph.D. thesis, Princeton University, 1948
E.P. Wigner, Phys. Rev. 98, 145 (1955)
F.T. Smith, Phys. Rev. 118, 349 (1960)
C. Brif, R. Chakrbarti, H. Rabitz, New J. Phys. 12, 075008 (2010)
J. Werschnik, E.K.U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007)
A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, Phys. Rev. A 75, 042308 (2007)
N. Khaneja, R. Brockett, S.J. Glaser, Phys. Rev. A 63, 032308 (2001)
K.W. Moore Tibbetts, C. Brif, M.D. Grace, A. Donovan, D.L. Hocker, T.S. Ho, R.B. Wu, H. Rabitz, Phys. Rev. A 86, 062309 (2012)
A. Castro, E. Räsänen, A. Rubio, E.K.U. Gross, EPL 87, 53001 (2009)
M. Hellgren, E. Räsänen, E.K.U. Gross, Phys. Rev. A 88, 013414 (2013)
Y. Censor, Appl. Math. Opt. 4, 41 (1977)
L. Bonacina, J. Extermann, A. Rondi, V. Boutou, J.P. Wolf, Phys. Rev. A 76, 023408 (2007)
G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933)
K. Boucke, H. Schmitz, H.J. Kull, Phys. Rev. A 56, 763 (1997)
J. Wassaf, V.V. Véniard, R. Taïeb, A. Maquet, Phys. Rev. A 67, 053405 (2003)
N. Moiseyev, H.J. Korsch, Phys. Rev. A 44, 7797 (1991)
L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)
K. Krieger, A. Castro, E. Gross, Chem. Phys. 391, 50 (2011)
M.A. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comp. Phys. Commun. 151, 60 (2003)
A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Physica Status Solidi B 243, 2465 (2006)
X. Andrade, J. Alberdi-Rodriguez, D.A. Strubbe, M.J.T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arruabarrena, S.G. Louie, A. Aspuru-Guzik et al., J. Phys.: Cond. Matter 24, 233202 (2012)
R. Storn, K. Price, J. Global Optim. 116, 341 (1997)
A. Fraser, Aust. J. Biol. Sci. 10, 484 (1957)
M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996)
B.V. Babu, P.G. Chakole, J.H.S. Mubeen, Chem. Eng. Sci. 60, 4822 (2005)
E. Mezura-Montes, M. Reyes-Sierra, C.A.C. Coello, Advances in Differential Evolution, Vol. 143 of Studies in Computational Intelligence Series (Springer Verlag, 2008)
M. Uiberacker, T. Uphues, M. Schultze, A.J. Verhoef, V. Yakovlev, M.F. Kling, J. Rauschenberger, N.M. Kabachnik, H. Schröder, M. Lezius et al., Nature 446, 627 (2007)
L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1964)
P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)
S. Chelkowski, A.D. Bandrauk, Phys. Rev. A 71, 053815 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kammerlander, D., Castro, A. & Marques, M.A.L. Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study. Eur. Phys. J. B 90, 91 (2017). https://doi.org/10.1140/epjb/e2017-70741-4
Received:
Published:
DOI: https://doi.org/10.1140/epjb/e2017-70741-4