Skip to main content
Log in

Electromagnetically induced transparency in double quantum dot under intense laser and magnetic fields: from Λ to Ξ configuration

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We theoretically investigated the effects of non-resonant intense laser and magnetic fields on the optical properties of asymmetric GaAs/AlGaAs double quantum dot related to the occurrence of electromagnetically induced transparency, using compact density-matrix formalism and effective mass approximation. The chosen structure has the advantage to present x-lambda(Λ)-configuration or y-ladder(Ξ)-configuration for EIT occurrence, depending on lasers polarization, at low values of the non-resonant laser, and to change the configuration from Λ to Ξ at the increase of the x-polarized non-resonant laser intensity. We discussed in detail the influences of the control laser field intensity, non-resonant laser strength and polarization, and magnetic field intensity on the absorption coefficient, refraction index and group index. It is found that: (i) the control laser or the non-resonant laser at the same control laser intensity influences more the system being in x-Ξ-configuration than in x-Λ-configuration and have intermediate effects on y-Ξ-configuration; (ii) the magnetic field has the greatest influence on the system being in x-Λ-configuration and the lowest for y-Ξ-configuration; (iii) the increment of the non-resonant intense laser or magnetic fields induces a red-shift of the transparency windows and sub (super) luminal frequency intervals for the Λ-configuration but a blue-shift for both Ξ-configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.J. Boller, A. Imamoglu, S. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  2. J.E. Field, K.H. Hahn, S.E. Harris, Phys. Rev. Lett. 67, 3062 (1991)

    Article  ADS  Google Scholar 

  3. B.S. Ham, P.R. Hemmer, M.S. Shahriar, Opt. Commun. 144, 317 (1997)

    Article  Google Scholar 

  4. C. Wei, N.B. Manson, Phys. Rev. A 60, 2540 (1999)

    Article  ADS  Google Scholar 

  5. G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Phys. Rev. Lett. 84, 1019 (2000)

    Article  ADS  Google Scholar 

  6. S.-M. Ma, H. Xu, B.S. Ham, Opt. Express 17, 148902 (2009)

    Google Scholar 

  7. S. Hanna, B. Eichenberg, D.A. Firsov, L.E. Vorobjev, V.M. Ustinov, A. Seilmeier, Physica E 75, 93 (2016)

    Article  ADS  Google Scholar 

  8. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  9. M.S. Bigelow, N.L. Lepeshkin, R.W. Boyd, Phys. Rev. Lett. 90, 113903 (2003)

    Article  ADS  Google Scholar 

  10. J. Zhang, G. Hernandez, Y. Zhu, Opt. Lett. 32, 1317 (2007)

    Article  ADS  Google Scholar 

  11. S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998)

    Article  ADS  Google Scholar 

  12. J. Clarke, H. Chen, W.A. van Wijngaarden, Appl. Opt. 40, 2047 (2001)

    Article  ADS  Google Scholar 

  13. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  14. R. Walsworth, S. Yelin, M. Lukin, Opt. Photon. News 13, 50 (2005)

    Article  ADS  Google Scholar 

  15. Z. Raki, H.R. Askari, Superlatt. Microstruct. 65, 161 (2014)

    Article  ADS  Google Scholar 

  16. M. Mirzaei, H.R. Askari, Z. Raki, Superlatt. Microstruct. 74, 61 (2014)

    Article  ADS  Google Scholar 

  17. E.C. Niculescu, Chem. Phys., accepted

  18. B. Vaseghi, N. Mohebi, J. Lumin. 134, 352 (2013)

    Article  Google Scholar 

  19. V. Pavlović, L. Stevanović, Superlatt. Microstruct. 92, 10 (2016)

    Article  ADS  Google Scholar 

  20. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014)

    Article  ADS  Google Scholar 

  21. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 93, 186802 (2004)

    Article  ADS  Google Scholar 

  22. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  23. J. Gorman, D.G. Hasko, D.A. Williams, Phys. Rev. Lett. 95, 090502 (2005)

    Article  ADS  Google Scholar 

  24. S. Selstø, M. Førre, Phys. Rev. B 74, 195327 (2006)

    Article  ADS  Google Scholar 

  25. M. Førre, J.P. Hansen, V. Popsueva, A. Dubois, Phys. Rev. B 74, 165304 (2006)

    Article  ADS  Google Scholar 

  26. A. Fountoulakis, A.F. Terzis, E. Paspalakis, J. Appl. Phys. 106, 074305 (2009)

    Article  ADS  Google Scholar 

  27. A. Fountoulakis, E. Paspalakis, J. Appl. Phys. 113, 174301 (2013)

    Article  ADS  Google Scholar 

  28. E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)

    Article  ADS  Google Scholar 

  29. D. Bejan, E.C. Niculescu, Phil. Mag. 96, 1131 (2016)

    Article  ADS  Google Scholar 

  30. D. Bejan, E.C. Niculescu, Eur. Phys. J. B 89, 138 (2016)

    Article  ADS  Google Scholar 

  31. D. Bejan, Mod. Phys. Lett. B 30, 1650361 (2016)

    Article  ADS  Google Scholar 

  32. D. Bejan, Phys. Lett. A 380, 3836 (2016)

    Article  ADS  Google Scholar 

  33. G.W. Bryant, Y.B. Band, Phys. Rev. B 63, 115304 (2001)

    Article  ADS  Google Scholar 

  34. M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  35. M. Gavrila, in Fundamentals of laser interactions, Lecture Notes in Physics, edited by F. Ehlotzky (Springer, Berlin, 1985), Vol. 229

  36. M. Pont, N.R. Walet, M. Gavrila, C.W. McCurdy, Phys. Rev. Lett. 61, 939 (1988)

    Article  ADS  Google Scholar 

  37. B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, Q. Fanyao, E.F. Da Silva Jr., V.N. Freire, Phys. Rev. B 70, 035307 (2004)

    Article  ADS  Google Scholar 

  38. H.S. Brandi, A. Latgé, L.E. Oliveira, Solid State Commun. 107, 31 (1998)

    Article  ADS  Google Scholar 

  39. R. Loudon, in The quantum theory of light, 2nd edn. (Clarendon Press, Oxford, 1988), Chaps. 1 and 2

  40. M. Fleischhauer, A. Imamoǧlu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  41. R.W. Boyd, in Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008), Chap. 6

  42. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  43. J.V. Lill, G.A. Parker, J.C. Light, Chem. Phys. Lett. 89, 483 (1982)

    Article  ADS  Google Scholar 

  44. J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)

    Article  ADS  Google Scholar 

  45. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  46. E.C. Niculescu, Opt. Mat. 64, 540 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Bejan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejan, D. Electromagnetically induced transparency in double quantum dot under intense laser and magnetic fields: from Λ to Ξ configuration. Eur. Phys. J. B 90, 54 (2017). https://doi.org/10.1140/epjb/e2017-70738-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70738-y

Keywords

Navigation