Skip to main content
Log in

Perfect valley polarization in MoS2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study perfect valley polarization in a molybdenum disulfide (MoS2) nanoribbon monolayer using two bands Hamiltonian model and non-equilibrium Green’s function method. The device consists of a one-dimensional quantum wire of MoS2 monolayer sandwiched between two zigzag MoS2 nanoribbons such that the sites A and B of the honeycomb lattice are constructed by the molecular orbital of Mo atoms, only. Spin-valley coupling is seen in energy dispersion curve due to the inversion asymmetry and time-reversal symmetry. Although, the time reversal symmetry is broken by applying an external magnetic field, the valley polarization is very small. A valley polarization equal to 46% can be achieved using an exchange field of 0.13 eV. It is shown that a particular spin-valley combination with perfect valley polarization can be selected based on a given set of exchange field and gate voltage as input parameters. Therefore, the valley polarization can be detected by detecting the spin degree of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haselman, S. Hauck, Proc. IEEE 98, 11 (2010)

    Article  Google Scholar 

  2. D.D. Awschalom, M.E. Flatté, N. Samarth, Sci. Am. 286, 66 (2002)

    Article  Google Scholar 

  3. L.E.F.F. Torres, S. Roche, J.-C. Charlier, Introduction to graphene-based nanomaterials: from electronic structure to quantum transport (Cambridge University Press, 2014)

  4. M.-C. Chang, Q. Niu, Phys. Rev. B 53, 7010 (1996)

    Article  ADS  Google Scholar 

  5. P. Recher, B. Trauzettel, A. Rycerz, Y.M. Blanter, C.W.J. Beenakker, A.F. Morpurgo, Phys. Rev. B 76, 235404 (2007)

    Article  ADS  Google Scholar 

  6. D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)

    Article  ADS  Google Scholar 

  7. P. Recher, J. Nilsson, G. Burkard, B. Trauzettel, Phys. Rev. B 79, 85407 (2009)

    Article  ADS  Google Scholar 

  8. L. Xiao-Ling, L. Zhe, Y. Hai-Bo, J. Li-Wei, G. Wen-Zhu, Z. Yi-Song, Phys. Rev. B 86, 045410 (2012)

    Article  ADS  Google Scholar 

  9. G.Y. Wu, N.-Y. Lue, Phys. Rev. B 86, 045456 (2012)

    Article  ADS  Google Scholar 

  10. T. Fujita, M.B.A. Jalil, S.G. Tanl, Appl. Phys. Lett. 97, 043508 (2010)

    Article  ADS  Google Scholar 

  11. C. Yesilyurt, S.G. Tan, G. Liang, M.B.A. Jalil, AIP Adv. 6, 056303 (2016)

    Article  ADS  Google Scholar 

  12. B. Soodchomshom, J. Appl. Phys. 115, 023706 (2014)

    Article  ADS  Google Scholar 

  13. K. Shakouri, H. Simchi, M. Esmaeilzadeh, H. Mazidabadi, F.M. Peeters, Phys. Rev. B 92, 35413 (2015)

    Article  ADS  Google Scholar 

  14. C. Yesilyurt, S.G. Tan, G. Liang, M.B.A. Jalil, Appl. Exp. 8, 105201 (2016)

    Article  Google Scholar 

  15. W.Y. Shan, H.Z. Lu, D. Xiao, Phys. Rev. B 88, 125301 (2013)

    Article  ADS  Google Scholar 

  16. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83, 245213 (2011)

    Article  ADS  Google Scholar 

  17. Z. Li, J.P. Carbotte, Phys. Rev. B: Condens. Matter Mater. Phys. 86, 205425 (2012)

    Article  ADS  Google Scholar 

  18. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Nat. Commun. 3, 887 (2012)

    Article  ADS  Google Scholar 

  19. D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  20. E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón, F. Guinea, Phys. Rev. B 88, 75409 (2013)

    Article  ADS  Google Scholar 

  21. H. Rostami, R. Asgari, Phys. Rev. B 89, 115413 (2014)

    Article  ADS  Google Scholar 

  22. H. Rostami, R. Roldán, E. Cappelluti, R. Asgari, F. Guinea, Phys. Rev. B 92, 195402 (2015)

    Article  ADS  Google Scholar 

  23. H. Rostami, R. Asgari, F. Guinea, arXiv:1511.07003 (2015)

  24. T.S. Li, Y.H. Ho, Phys. Lett. A 380, 444 (2016)

    Article  ADS  Google Scholar 

  25. H. Rostami, R. Asgari, Phys. Rev. B 91, 75433 (2015)

    Article  ADS  Google Scholar 

  26. T. Wolfram,Ş. Ellialtıoğlu, Applications of Group Theory to Atoms, Molecules, and Solids (Cambridge University Press, New York, 2014)

  27. O. Vafek, A. Vishwanath, Annu. Rev. Condens. Matter Phys. 5, 83 (2014)

    Article  Google Scholar 

  28. M. Tahir, P. Vasilopoulos, F.M. Peeters, Phys. Rev. B 93, 35406 (2016)

    Article  ADS  Google Scholar 

  29. J. Klinovaja, D. Loss, Phys. Rev. B 88, 75404 (2013)

    Article  ADS  Google Scholar 

  30. A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N.D. Drummond, V. Falko, 2D Mater. 2, 22001 (2015)

    Article  Google Scholar 

  31. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Simchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heshmati-Moulai, A., Simchi, H. & Esmaeilzadeh, M. Perfect valley polarization in MoS2 . Eur. Phys. J. B 90, 128 (2017). https://doi.org/10.1140/epjb/e2017-70726-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70726-3

Keywords

Navigation