First principle calculations of iron and iron-boron transition levels in Si1−xGex alloy

  • Mohammed Alshaikh Hamid Khalafalla
  • Abdelmadjid Mesli
Regular Article

Abstract

This paper investigates, using first principle calculations, the charge transition levels Fe0/+ and FeB0/+, and the FeB binding energy in Si1−xGex alloy with composition x = 3 − 25%. The alloys were generated using an efficient code for the stochastic generation of special quasirandom structures. We found that the separation between Fe0/+ and FeB0/+ donor levels was ~0.24 eV (experimental value =0.28 eV) and was independent on x, in an agreement with the experiment. The pattern of the variation of the levels and band gap energies with x agreed very well with the experiment especially for x< 25 %. The formation of FeB-pairs was found to be favorable over individual Fe formation with average binding energy ~0.2 eV, agreeing with the first-principle calculation report using finite supercell size. In particular, the reliability of our method to reproduce the experimental results associated with the composition controlled FeB donor levels has successfully been demonstrated in the industrially interesting SiGe alloy material.

Keywords

Computational Methods 

References

  1. 1.
    A. Mesli, B. Vileno, C. Eckert, A. Slaoui, C. Pedersen, A.N. Larsen, N. Abrosimov, Phys. Rev. B 66, 045206 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    M. Sanati, N.G. Szwacki, S. Estreicher, Phys. Rev. B 76, 125204 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. Wünstel, P. Wagner, Appl. Phys. A 27, 207 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    A. Carvalho, J. Coutinho, R. Jones, J. Goss, M. Barroso, P. Briddon, Phys. Rev. B 78, 125208 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Calphad 42, 13 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Van de Walle, M. Asta, G. Ceder, Calphad 26, 539 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Istratov, H. Hieslmair, E. Weber, Appl. Phys. A 69, 13 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Van Kooten, G. Weller, C. Ammerlaan, Phys. Rev. B 30, 4564 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    M. Höhne, U. Juda, J. Wollweber, D. Schulz, J. Donecker, A. Gerhardt, Mater. Sci. Forum (Trans. Tech. Publ., 1995), pp. 359–364Google Scholar
  10. 10.
    T. Kamins, Phys. B: Condens. Matter 273, 603 (1999)ADSGoogle Scholar
  11. 11.
    J. Goss, M. Shaw, P. Briddon, Top. Appl. Phys. 104, 69 (2007)Google Scholar
  12. 12.
    R.G. Parr, Density Functional Theory of Atoms and Molecules (Springer, 1980)Google Scholar
  13. 13.
    C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    J. Weber, M. Alonso, Phys. Rev. B 40, 5683 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)ADSCrossRefGoogle Scholar
  17. 17.
    W. Martienssen, H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer Science & Business Media, 2006)Google Scholar
  18. 18.
    P. Haas, F. Tran, P. Blaha, Phys. Rev. B 79, 085104 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  20. 20.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    G. Bachelet, D. Hamann, M. Schlüter, Phys. Rev. B 26, 4199 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    P. Schwerdtfeger, Chem. Phys. Chem. 12, 3143 (2011)CrossRefGoogle Scholar
  23. 23.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.E. Northrup, S. Zhang, Phys. Rev. B 47, 6791 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    G. Makov, M. Payne, Phys. Rev. B 51, 4014 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    S. Lany, A. Zunger, Phys. Rev. B 78, 235104 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    A. Seidl, A. Görling, P. Vogl, J. Majewski, M. Levy, Phys. Rev. B 53, 3764 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    H. Conzelmann, K. Graff, E. Weber, Appl. Phys. A 30, 169 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    A. Chantre, D. Bois, Phys. Rev. B 31, 7979 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    H. Conzelmann, Appl. Phys. A 42, 1 (1987)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Taibah University, College of Science, Department of PhysicsYanbuSaudi Arabia
  2. 2.Aix-Marseille Université, CNRS, IM2NP UMR7334Marseille Cedex 20France

Personalised recommendations