Autonomous learning by simple dynamical systems with a discrete-time formulation

Regular Article


We present a discrete-time formulation for the autonomous learning conjecture. The main feature of this formulation is the possibility to apply the autonomous learning scheme to systems in which the errors with respect to target functions are not well-defined for all times. This restriction for the evaluation of functionality is a typical feature in systems that need a finite time interval to process a unit piece of information. We illustrate its application on an artificial neural network with feed-forward architecture for classification and a phase oscillator system with synchronization properties. The main characteristics of the discrete-time formulation are shown by constructing these systems with predefined functions.


Statistical and Nonlinear Physics 


  1. 1.
    P. Kaluza, A.S. Mikhailov, Phys. Rev. E 90, 030901 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    R. Rojas, Neural networks: a systematic introduction (Springer-Verlag, Berlin, New-York, 1996)Google Scholar
  3. 3.
    P. Kaluza, E. Urdapilleta, Eur. Phys. J. B 87, 236 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    M. Inoue, K. Kaneko, PLoS Comput. Biol. 9, e1003001 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    P. Kaluza, M. Inoue, Eur. Phys. J. B 89, 156 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    P. Kaluza, A.S. Mikhailov. Eur. Phys. J. B 85, 129 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Schuster, Int. J. Comput. Intell. 4, 88 (2008)Google Scholar
  8. 8.
    S. Bornholdt, K. Sneppen, Proc. R. Soc. Lond. B 267, 1459 (2000)CrossRefGoogle Scholar
  9. 9.
    P. Kaluza, M. Ipsen, M. Vingron, A.S. Mikhailov. Phys. Rev. E 75, 015101 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    T. Yanagita, A.S. Mikhailov, Phys. Rev. E 81, 031901 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, New York, 1984)Google Scholar
  12. 12.
    R. Urbanczik, W. Senn, Nat. Neurosci. 12, 250 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Facultad de Ciencias Exactas y Naturales, Universidad Nacional de CuyoMendozaArgentina
  2. 2.Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), CONICET – Universidad Nacional de Mar del PlataMar del PlataArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) CABAArgentina

Personalised recommendations