A first order Tsallis theory

  • Gustavo L. Ferri
  • Angel Plastino
  • Mario C. Rocca
  • Dario J. Zamora
Regular Article

Abstract

We investigate first-order approximations to both (i) Tsallis’ entropy Sq and (ii) the Sq-MaxEnt solution (called q-exponential functions eq). We use an approximation/expansion for q very close to unity. It is shown that the functions arising from the procedure (ii) are the MaxEnt solutions to the entropy emerging from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    C.M. Gell-Mann, C. Tsallis, Nonextensive Entropy; Interdisciplinary Applications (Oxford University Press, New York, 2004)Google Scholar
  3. 3.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009)Google Scholar
  4. 4.
    G.B. Bagci, T. Oikonomou, Phys. Rev. E 88, 042126 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    D. O’Malley, Phys. Rev. E 91, 042143 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    G.B. Bagci, Phys. Rev. E 93, 022112 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ponmurugan, Phys. Rev. E 93, 032107 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    A. Adare et al., Phys. Rev. D 83, 052004 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    G. Wilk, Z. Wlodarczyk, Physica A 305, 227 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102, 097202 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    E. Lutz, F. Renzoni, Nat. Phys. 9, 615 (2013)CrossRefGoogle Scholar
  12. 12.
    R.G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Huang, G. Su, A. El Kaabouchi, Q.A. Wang, J. Chen, J. Stat. Mech. 2010, L05001 (2010)Google Scholar
  14. 14.
    J. Prehl, C. Essex, K. H. Hoffman, Entropy 14, 701 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    O. Afsar, U. Tirnakli, Europhys. Lett. 101, 20003 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79, 056209 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Ruiz, T. Bountis, C. Tsallis, Int. J. Bifurc. Chaos 22, 1250208 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Beck, S. Miah, Phys. Rev. E 87, 031002 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    S. Abe, Astrophys. Space Sci. 305, 241 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    S. Picoli, R.S. Mendes, L.C. Malacarne, R.P.B. Santos, Braz. J. Phys. 39, 468 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Guo et al., Comm. Nonlin. Sci. Num. Sim. 38, 257 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Q. Guo et al., Physica A 449, 43 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    P. Liu et al., Physica A 441, 32 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    F. Long et al., Physica A 391, 5305 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Gong et al., Fluct. Noise Lett. 11, 1250008 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Zhang et al., Physica A 390, 147 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Gong et al., Int. J. Bifurc. Chaos 20, 3709 (2010)CrossRefGoogle Scholar
  30. 30.
    D.X. Li et al., Comm. Theor. Phys. 49, 689 (2008)CrossRefGoogle Scholar
  31. 31.
    D. Wu et al., Physica A 373, 203 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    H.S. Wio et al., Physica D 193, 161 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    A. Plastino, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    R.M. Todaro, Stratospheric ozone, NASA’s Goddard Space Flight Center Atmospheric Chemistry and Dynamics Branch. http://www.ccpo.odu.edu/ SEES/ozone/oz˙class.htm
  35. 35.
    C. Tsallis, Physica A 340, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    G.L. Ferri, M.F. Reynoso Savio, A. Plastino, Physica A 389, 1829 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    C. Vignat, A. Plastino, Physica A 388, 601 (2009)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    P.T. Landsberg, Braz. J. Phys. 29, 46 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    G.Y. Shilov, Mathematical Analysis (Pergamon Press, NY, 1965)Google Scholar
  41. 41.
    A. Plastino, M.C. Rocca, Physica A 436, 572 (2015)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    I.S. Gradshteyn, I.M. Rizhik, in Table of Integrals Series and Products (Academic Press, NY, 1965), Vol. 3.194,3, p.285Google Scholar
  43. 43.
    A.R. Plastino, A. Plastino, Phys. Lett. A 177, 177 (1993)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gustavo L. Ferri
    • 1
  • Angel Plastino
    • 2
    • 3
  • Mario C. Rocca
    • 2
    • 3
  • Dario J. Zamora
    • 2
    • 3
  1. 1.Fac. de C. Exactas-National University La PampaLa PampaArgentina
  2. 2.La Plata National UniversityLa PlataArgentina
  3. 3.Argentina’s National Research Council (IFLP-CCT-CONICET)-C. C. 727La PlataArgentina

Personalised recommendations