A first order Tsallis theory

  • Gustavo L. Ferri
  • Angel Plastino
  • Mario C. Rocca
  • Dario J. Zamora
Regular Article

DOI: 10.1140/epjb/e2017-70699-1

Cite this article as:
Ferri, G.L., Plastino, A., Rocca, M.C. et al. Eur. Phys. J. B (2017) 90: 46. doi:10.1140/epjb/e2017-70699-1

Abstract

We investigate first-order approximations to both (i) Tsallis’ entropy Sq and (ii) the Sq-MaxEnt solution (called q-exponential functions eq). We use an approximation/expansion for q very close to unity. It is shown that the functions arising from the procedure (ii) are the MaxEnt solutions to the entropy emerging from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.

Keywords

Statistical and Nonlinear Physics 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gustavo L. Ferri
    • 1
  • Angel Plastino
    • 2
    • 3
  • Mario C. Rocca
    • 2
    • 3
  • Dario J. Zamora
    • 2
    • 3
  1. 1.Fac. de C. Exactas-National University La PampaLa PampaArgentina
  2. 2.La Plata National UniversityLa PlataArgentina
  3. 3.Argentina’s National Research Council (IFLP-CCT-CONICET)-C. C. 727La PlataArgentina

Personalised recommendations