Skip to main content
Log in

A first order Tsallis theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate first-order approximations to both (i) Tsallis’ entropy S q and (ii) the S q -MaxEnt solution (called q-exponential functions e q ). We use an approximation/expansion for q very close to unity. It is shown that the functions arising from the procedure (ii) are the MaxEnt solutions to the entropy emerging from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  2. C.M. Gell-Mann, C. Tsallis, Nonextensive Entropy; Interdisciplinary Applications (Oxford University Press, New York, 2004)

  3. C. Tsallis, Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009)

  4. G.B. Bagci, T. Oikonomou, Phys. Rev. E 88, 042126 (2013)

    Article  ADS  Google Scholar 

  5. D. O’Malley, Phys. Rev. E 91, 042143 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. G.B. Bagci, Phys. Rev. E 93, 022112 (2016)

    Article  ADS  Google Scholar 

  7. M. Ponmurugan, Phys. Rev. E 93, 032107 (2016)

    Article  ADS  Google Scholar 

  8. A. Adare et al., Phys. Rev. D 83, 052004 (2011)

    Article  ADS  Google Scholar 

  9. G. Wilk, Z. Wlodarczyk, Physica A 305, 227 (2002)

    Article  ADS  Google Scholar 

  10. R.M. Pickup, R. Cywinski, C. Pappas, B. Farago, P. Fouquet, Phys. Rev. Lett. 102, 097202 (2009)

    Article  ADS  Google Scholar 

  11. E. Lutz, F. Renzoni, Nat. Phys. 9, 615 (2013)

    Article  Google Scholar 

  12. R.G. DeVoe, Phys. Rev. Lett. 102, 063001 (2009)

    Article  ADS  Google Scholar 

  13. Z. Huang, G. Su, A. El Kaabouchi, Q.A. Wang, J. Chen, J. Stat. Mech. 2010, L05001 (2010)

    Google Scholar 

  14. J. Prehl, C. Essex, K. H. Hoffman, Entropy 14, 701 (2012)

    Article  ADS  Google Scholar 

  15. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2018)

    Article  ADS  Google Scholar 

  16. O. Afsar, U. Tirnakli, Europhys. Lett. 101, 20003 (2013)

    Article  ADS  Google Scholar 

  17. U. Tirnakli, C. Tsallis, C. Beck, Phys. Rev. E 79, 056209 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Ruiz, T. Bountis, C. Tsallis, Int. J. Bifurc. Chaos 22, 1250208 (2012)

    Article  Google Scholar 

  19. C. Beck, S. Miah, Phys. Rev. E 87, 031002 (2013)

    Article  ADS  Google Scholar 

  20. G. Wilk, Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000)

    Article  ADS  Google Scholar 

  21. S. Abe, Astrophys. Space Sci. 305, 241 (2006)

    Article  ADS  Google Scholar 

  22. S. Picoli, R.S. Mendes, L.C. Malacarne, R.P.B. Santos, Braz. J. Phys. 39, 468 (2009)

    Article  ADS  Google Scholar 

  23. Y. Guo et al., Comm. Nonlin. Sci. Num. Sim. 38, 257 (2016)

    Article  ADS  Google Scholar 

  24. Q. Guo et al., Physica A 449, 43 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Liu et al., Physica A 441, 32 (2016)

    Article  ADS  Google Scholar 

  26. F. Long et al., Physica A 391, 5305 (2012)

    Article  ADS  Google Scholar 

  27. Y. Gong et al., Fluct. Noise Lett. 11, 1250008 (2012)

    Article  Google Scholar 

  28. R. Zhang et al., Physica A 390, 147 (2011)

    Article  ADS  Google Scholar 

  29. Y. Gong et al., Int. J. Bifurc. Chaos 20, 3709 (2010)

    Article  Google Scholar 

  30. D.X. Li et al., Comm. Theor. Phys. 49, 689 (2008)

    Article  Google Scholar 

  31. D. Wu et al., Physica A 373, 203 (2007)

    Article  ADS  Google Scholar 

  32. H.S. Wio et al., Physica D 193, 161 (2004)

    Article  ADS  Google Scholar 

  33. A. Plastino, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)

    Article  ADS  Google Scholar 

  34. R.M. Todaro, Stratospheric ozone, NASA’s Goddard Space Flight Center Atmospheric Chemistry and Dynamics Branch. http://www.ccpo.odu.edu/ SEES/ozone/oz˙class.htm

  35. C. Tsallis, Physica A 340, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  36. G.L. Ferri, M.F. Reynoso Savio, A. Plastino, Physica A 389, 1829 (2010)

    Article  ADS  Google Scholar 

  37. C. Vignat, A. Plastino, Physica A 388, 601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  39. P.T. Landsberg, Braz. J. Phys. 29, 46 (1999)

    Article  ADS  Google Scholar 

  40. G.Y. Shilov, Mathematical Analysis (Pergamon Press, NY, 1965)

  41. A. Plastino, M.C. Rocca, Physica A 436, 572 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. I.S. Gradshteyn, I.M. Rizhik, in Table of Integrals Series and Products (Academic Press, NY, 1965), Vol. 3.194,3, p.285

  43. A.R. Plastino, A. Plastino, Phys. Lett. A 177, 177 (1993)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario C. Rocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, G.L., Plastino, A., Rocca, M.C. et al. A first order Tsallis theory. Eur. Phys. J. B 90, 46 (2017). https://doi.org/10.1140/epjb/e2017-70699-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-70699-1

Keywords

Navigation