Critical behavior in earthquake energy dissipation

Abstract

We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially “scale-free”, displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Sornette, D. Sornette, Europhys. Lett. 9, 197 (1989)

    ADS  Article  Google Scholar 

  2. 2.

    D. Pastén, V. Muñoz, A. Cisternas, J. Rogan, J.A. Valdivia, Phys. Rev. E 84, 066123 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    J.X. de Carvalho, C. Prado, Phys. Rev. Lett. 84, 4006 (2000)

    ADS  Article  Google Scholar 

  4. 4.

    T. Chelidze, T. Matcharashvili, Tectonophysics 431, 49 (2007)

    ADS  Article  Google Scholar 

  5. 5.

    K. Ito, M. Matsuzaki, J. Geophys. Res. B 95, 2156 (1989)

    Google Scholar 

  6. 6.

    P. Bak, C. Tang, J. Geophys. Res. B 94, 15635 (1989)

    ADS  Article  Google Scholar 

  7. 7.

    R. Chicheportiche, A. Chakraborti, Phys. Rev. E 89, 042117 (2014)

    ADS  Article  Google Scholar 

  8. 8.

    D.W. Steeples, D.D. Steeples, Bull. Seismol. Soc. Am. 86, 921 (1996)

    Google Scholar 

  9. 9.

    N.W. Watkins, Nonlinear Proc. Geophys. 9, 389 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    N.W. Watkins, D. Credington, R. Sanchez, S.J. Rosenberg, S. Chapman, Phys. Rev. E 79, 041124 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    H.E. Stanley, Rev. Mod. Phys. 71, S538 (1999)

    Article  Google Scholar 

  12. 12.

    N. Lammoglia, V. Muñoz, J. Rogan, B. Toledo, R. Zarama, J.A. Valdivia, Phys. Rev. E 78, 047103 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    J.L. Cardy, P. Grassberger, J. Phys. A 18, L267 (1985)

    ADS  Article  Google Scholar 

  14. 14.

    H.K. Janssen, Z. Phys. B 58, 311 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    A.J. Klimas, J.A. Valdivia, D. Vassiliadis, D.N. Baker, M. Hesse, J. Takalo, J. Geophys. Res. 105, 18765 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, J.A. Valdivia, A.J. Klimas, J. Geophys. Res. A 105, 12955 (2000)

    ADS  Article  Google Scholar 

  17. 17.

    J.A. Valdivia, J. Rogan, V. Muñoz, B. Toledo, Space Sci. Rev. 122, 313 (2006)

    ADS  Article  Google Scholar 

  18. 18.

    J.A. Valdivia, J. Rogan, V. Muñoz, B. Toledo, M. Stepanova, Adv. Space Res. 51, 1934 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    M. Domínguez, V. Muñoz, J.A. Valdivia, J. Geophys. Res. 119, 3585 (2014)

    Article  Google Scholar 

  20. 20.

    B.A. Toledo, V. Muñoz, J. Rogan, C. Tenreiro, J.A. Valdivia, Phys. Rev. E 70, 016107 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    J. Villalobos, B.A. Toledo, D. Pastén, V. Muñoz, J. Rogan, R. Zarama, N. Lammoglia, J.A. Valdivia, Chaos 20, 013109 (2010)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    B. Toledo, M.A.F. Sanjuan, V. Muñoz, J. Rogan, J.A. Valdivia, Commun. Nonlinear Sci. Numer. Simul. 18, 81 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  23. 23.

    J.A. Wanliss, J. Geophys. Res. A 110, 10544 (2005)

    Google Scholar 

  24. 24.

    R. Dickman, Phys. Rev. E 53, 2223 (1996)

    ADS  Article  Google Scholar 

  25. 25.

    M.A. Muñoz, R. Dickman, R. Pastor-Satorras, A. Vespignani, S. Zapperi, Sandpiles and Absorbing-State Phase Transitions: Recent Results and Open Problems, in Modeling Complex Systems: Sixth Granada Lectures on Computational Physics, edited by P.L. Garrido, J. Marro (2001), Vol. 574, p. 102

  26. 26.

    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    M. Paczuski, S. Maslov, P. Bak, Phys. Rev. E 53, 414 (1996)

    ADS  Article  Google Scholar 

  28. 28.

    J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999)

  29. 29.

    R. Dickman, M.A. Muñoz, A. Vespignani, S. Zapperi, Braz. J. Phys. 30, 27 (2002)

    ADS  Article  Google Scholar 

  30. 30.

    J. Wanliss, V. Uritsky, J. Geophys. Res. 115, A03215 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    C.F. Richter, Elementary Seismology (W. H. Freeman & Co., Princeton, USA, 1958)

  32. 32.

    P.A. Rydelek, I.S. Sacks, Nature 337, 251 (1989)

    ADS  Article  Google Scholar 

  33. 33.

    F.R. Zuniga, M. Wyss, Bull. Seismol. Soc. Am. 85, 1858 (1995)

    Google Scholar 

  34. 34.

    B. Gutenberg, C.F. Richter, Bull. Seismol. Soc. Am. 34, 185 (1944)

    Google Scholar 

  35. 35.

    S. Wiemer, M. Wyss, Bull. Seismol. Soc. Am. 90, 859 (2000)

    Article  Google Scholar 

  36. 36.

    M. Bath, Phys. Chem. Earth 7, 115 (1966)

    Article  Google Scholar 

  37. 37.

    D. Pastén, D. Comte, J. Seismol. 18, 707 (2014)

    ADS  Article  Google Scholar 

  38. 38.

    P. Diodati, F. Marchesoni, S. Piazza, Phys. Rev. Lett. 67, 2239 (1991)

    ADS  Article  Google Scholar 

  39. 39.

    P. Diodati, P. Bak, F. Marchesoni, Earth Planet. Sci. Lett. 182, 253 (2000)

    ADS  Article  Google Scholar 

  40. 40.

    J. Wanliss, J. Weygand, Geophys. Res. Lett. 34, 04107 (2007)

    ADS  Article  Google Scholar 

  41. 41.

    T. Hwa, M. Kardar, Phys. Rev. A 45, 7002 (1992)

    ADS  Article  Google Scholar 

  42. 42.

    A. Deluca, P. Puig, A. Corra, Testing universality and goodness-of-fit test of power-law distributions, in Extended Abstracts Spring 2013, Trends in Mathematics, edited by A. Corral, A. Deluca, F. Font-Clos, P. Guerrero, A. Korobeinikov, F. Massucci (Birkhäuser, Cham, 2014), Vol. 2, pp. 13–18

  43. 43.

    G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley Series in Probability and Statistics (Wiley, 2005)

  44. 44.

    P. Bhattacharya, B.K. Chakrabarti, Kamal, A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data, in Continuum Models and Discrete Systems Symposia (CMDS-12), Journal of Physics: Conference Series (2011), Vol. 319, p. 012004

  45. 45.

    M.A. Muñoz, R. Dickman, A. Vespignani, S. Zapperi, Phys. Rev. E 59, 6175 (1999)

    ADS  Article  Google Scholar 

  46. 46.

    Y. Ben-Zion, J.R. Rice, J. Geophys. Res. B 102, 17771 (1997)

    ADS  Article  Google Scholar 

  47. 47.

    S. Xu, Y. Ben-Zion, J.P. Ampuero, V. Lyakhovsky, Pure Appl. Geophys. 172, 1243 (2014)

    ADS  Article  Google Scholar 

  48. 48.

    J.A. Wanliss, K. Shiokawa, K. Yumoto, Nonlinear Proc. Geophys. 21, 347 (2014)

    ADS  Article  Google Scholar 

  49. 49.

    V. Anh, Z.G. Yu, J. Wanliss, S. Watson, Nonlinear Proc. Geophys. 12, 799 (2005)

    ADS  Article  Google Scholar 

  50. 50.

    C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)

    ADS  Article  Google Scholar 

  51. 51.

    H. Hinrichsen, Physica A 369, 1 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    A.T. Kazumasa, M. Kuroda, H. Chaté, M. Sano, Phys. Rev. E 80, 051116 (2009)

    ADS  Article  Google Scholar 

  53. 53.

    H. Hinrichsen, Physics 2, 96 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denisse Pastén.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wanliss, J., Muñoz, V., Pastén, D. et al. Critical behavior in earthquake energy dissipation. Eur. Phys. J. B 90, 167 (2017). https://doi.org/10.1140/epjb/e2017-70657-y

Download citation

Keywords

  • Statistical and Nonlinear Physics