Advertisement

Critical behavior in earthquake energy dissipation

  • James Wanliss
  • Víctor Muñoz
  • Denisse Pastén
  • Benjamín Toledo
  • Juan Alejandro Valdivia
Regular Article

Abstract

We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially “scale-free”, displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Sornette, D. Sornette, Europhys. Lett. 9, 197 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    D. Pastén, V. Muñoz, A. Cisternas, J. Rogan, J.A. Valdivia, Phys. Rev. E 84, 066123 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J.X. de Carvalho, C. Prado, Phys. Rev. Lett. 84, 4006 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    T. Chelidze, T. Matcharashvili, Tectonophysics 431, 49 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    K. Ito, M. Matsuzaki, J. Geophys. Res. B 95, 2156 (1989)Google Scholar
  6. 6.
    P. Bak, C. Tang, J. Geophys. Res. B 94, 15635 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    R. Chicheportiche, A. Chakraborti, Phys. Rev. E 89, 042117 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    D.W. Steeples, D.D. Steeples, Bull. Seismol. Soc. Am. 86, 921 (1996)Google Scholar
  9. 9.
    N.W. Watkins, Nonlinear Proc. Geophys. 9, 389 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    N.W. Watkins, D. Credington, R. Sanchez, S.J. Rosenberg, S. Chapman, Phys. Rev. E 79, 041124 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    H.E. Stanley, Rev. Mod. Phys. 71, S538 (1999)CrossRefGoogle Scholar
  12. 12.
    N. Lammoglia, V. Muñoz, J. Rogan, B. Toledo, R. Zarama, J.A. Valdivia, Phys. Rev. E 78, 047103 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    J.L. Cardy, P. Grassberger, J. Phys. A 18, L267 (1985)ADSCrossRefGoogle Scholar
  14. 14.
    H.K. Janssen, Z. Phys. B 58, 311 (1985)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.J. Klimas, J.A. Valdivia, D. Vassiliadis, D.N. Baker, M. Hesse, J. Takalo, J. Geophys. Res. 105, 18765 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    M.I. Sitnov, A.S. Sharma, K. Papadopoulos, D. Vassiliadis, J.A. Valdivia, A.J. Klimas, J. Geophys. Res. A 105, 12955 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Valdivia, J. Rogan, V. Muñoz, B. Toledo, Space Sci. Rev. 122, 313 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    J.A. Valdivia, J. Rogan, V. Muñoz, B. Toledo, M. Stepanova, Adv. Space Res. 51, 1934 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M. Domínguez, V. Muñoz, J.A. Valdivia, J. Geophys. Res. 119, 3585 (2014)CrossRefGoogle Scholar
  20. 20.
    B.A. Toledo, V. Muñoz, J. Rogan, C. Tenreiro, J.A. Valdivia, Phys. Rev. E 70, 016107 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    J. Villalobos, B.A. Toledo, D. Pastén, V. Muñoz, J. Rogan, R. Zarama, N. Lammoglia, J.A. Valdivia, Chaos 20, 013109 (2010)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    B. Toledo, M.A.F. Sanjuan, V. Muñoz, J. Rogan, J.A. Valdivia, Commun. Nonlinear Sci. Numer. Simul. 18, 81 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.A. Wanliss, J. Geophys. Res. A 110, 10544 (2005)Google Scholar
  24. 24.
    R. Dickman, Phys. Rev. E 53, 2223 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Muñoz, R. Dickman, R. Pastor-Satorras, A. Vespignani, S. Zapperi, Sandpiles and Absorbing-State Phase Transitions: Recent Results and Open Problems, in Modeling Complex Systems: Sixth Granada Lectures on Computational Physics, edited by P.L. Garrido, J. Marro (2001), Vol. 574, p. 102Google Scholar
  26. 26.
    P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. A 38, 364 (1988)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Paczuski, S. Maslov, P. Bak, Phys. Rev. E 53, 414 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    J. Marro, R. Dickman, Nonequilibrium Phase Transitions in Lattice Models (Cambridge University Press, Cambridge, 1999)Google Scholar
  29. 29.
    R. Dickman, M.A. Muñoz, A. Vespignani, S. Zapperi, Braz. J. Phys. 30, 27 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    J. Wanliss, V. Uritsky, J. Geophys. Res. 115, A03215 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    C.F. Richter, Elementary Seismology (W. H. Freeman & Co., Princeton, USA, 1958)Google Scholar
  32. 32.
    P.A. Rydelek, I.S. Sacks, Nature 337, 251 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    F.R. Zuniga, M. Wyss, Bull. Seismol. Soc. Am. 85, 1858 (1995)Google Scholar
  34. 34.
    B. Gutenberg, C.F. Richter, Bull. Seismol. Soc. Am. 34, 185 (1944)Google Scholar
  35. 35.
    S. Wiemer, M. Wyss, Bull. Seismol. Soc. Am. 90, 859 (2000)CrossRefGoogle Scholar
  36. 36.
    M. Bath, Phys. Chem. Earth 7, 115 (1966)CrossRefGoogle Scholar
  37. 37.
    D. Pastén, D. Comte, J. Seismol. 18, 707 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    P. Diodati, F. Marchesoni, S. Piazza, Phys. Rev. Lett. 67, 2239 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    P. Diodati, P. Bak, F. Marchesoni, Earth Planet. Sci. Lett. 182, 253 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    J. Wanliss, J. Weygand, Geophys. Res. Lett. 34, 04107 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    T. Hwa, M. Kardar, Phys. Rev. A 45, 7002 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    A. Deluca, P. Puig, A. Corra, Testing universality and goodness-of-fit test of power-law distributions, in Extended Abstracts Spring 2013, Trends in Mathematics, edited by A. Corral, A. Deluca, F. Font-Clos, P. Guerrero, A. Korobeinikov, F. Massucci (Birkhäuser, Cham, 2014), Vol. 2, pp. 13–18Google Scholar
  43. 43.
    G.A.F. Seber, C.J. Wild, Nonlinear Regression, Wiley Series in Probability and Statistics (Wiley, 2005)Google Scholar
  44. 44.
    P. Bhattacharya, B.K. Chakrabarti, Kamal, A fractal model of earthquake occurrence: theory, simulations and comparisons with the aftershock data, in Continuum Models and Discrete Systems Symposia (CMDS-12), Journal of Physics: Conference Series (2011), Vol. 319, p. 012004Google Scholar
  45. 45.
    M.A. Muñoz, R. Dickman, A. Vespignani, S. Zapperi, Phys. Rev. E 59, 6175 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Ben-Zion, J.R. Rice, J. Geophys. Res. B 102, 17771 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    S. Xu, Y. Ben-Zion, J.P. Ampuero, V. Lyakhovsky, Pure Appl. Geophys. 172, 1243 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    J.A. Wanliss, K. Shiokawa, K. Yumoto, Nonlinear Proc. Geophys. 21, 347 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    V. Anh, Z.G. Yu, J. Wanliss, S. Watson, Nonlinear Proc. Geophys. 12, 799 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    C.K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley, A.L. Goldberger, Phys. Rev. E 49, 1685 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    H. Hinrichsen, Physica A 369, 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    A.T. Kazumasa, M. Kuroda, H. Chaté, M. Sano, Phys. Rev. E 80, 051116 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    H. Hinrichsen, Physics 2, 96 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • James Wanliss
    • 1
  • Víctor Muñoz
    • 2
  • Denisse Pastén
    • 2
    • 3
  • Benjamín Toledo
    • 2
  • Juan Alejandro Valdivia
    • 2
    • 4
  1. 1.Department of Physics and Computer ScienceClintonUSA
  2. 2.Departamento de Física, Universidad de ChileSantiagoChile
  3. 3.Advanced Mining Technology Center, Universidad de ChileSantiagoChile
  4. 4.Centro para la Nanociencia y la Nanotecnología, CEDENNASantiagoChile

Personalised recommendations