Dynamic structure of stock communities: a comparative study between stock returns and turnover rates

  • Li-Ling Su
  • Xiong-Fei Jiang
  • Sai-Ping Li
  • Li-Xin Zhong
  • Fei Ren
Regular Article
  • 55 Downloads

Abstract

The detection of community structure in stock market is of theoretical and practical significance for the study of financial dynamics and portfolio risk estimation. We here study the community structures in Chinese stock markets from the aspects of both price returns and turnover rates, by using a combination of the PMFG and infomap methods based on a distance matrix. An empirical study using the overall data set shows that for both returns and turnover rates the largest communities are composed of specific industrial or conceptional sectors and the correlation inside a sector is generally larger than the correlation between different sectors. However, the community structure for turnover rates is more complex than that for returns, which indicates that the interactions between stocks revealed by turnover rates may contain more information. This conclusion is further confirmed by the analysis of the changes in the dynamics of community structures over five sub-periods. Sectors like banks, real estate, health care and New Shanghai take turns to comprise a few of the largest communities in different sub-periods, and more interestingly several specific sectors appear in the communities with different rank orders for returns and turnover rates even in the same sub-period. To better understand their differences, a comparison between the evolution of the returns and turnover rates of the stocks from these sectors is conducted. We find that stock prices only had large changes around important events while turnover rates surged after each of these events relevant to specific sectors, which shows strong evidence that the turnover rates are more susceptible to exogenous shocks than returns and its measurement for community detection may contain more useful information about market structure.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L.A. Nunes Amaral, H.E. Stanley, Phys. Rev. Lett. 83, 1471 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    L. Laloux, P. Cizeau, J.P. Bouchaud, M. Potters, Phys. Rev. Lett. 83, 1467 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Y. Zheng, B. Podobnik, L. Feng, B.W. Li, Sci. Rep. 2, 888 (2012)ADSGoogle Scholar
  4. 4.
    M. Billio, M. Getmansky, A.W. Lo, L. Pelizzon, J. Financ. Econ. 104, 535 (2012)CrossRefGoogle Scholar
  5. 5.
    M. Kritzman, Y.Z. Li, S. Page, R. Rigobon, J. Portf. Manag. 37, 112 (2011)CrossRefGoogle Scholar
  6. 6.
    R.N. Mantegna, Eur. Phys. J. B 11, 193 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    A. Garas, P. Argyrakis, Europhys. Lett. 86, 28005 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S.M. Cai, Y.B. Zhou, T. Zhou, P.L. Zhou, Int. J. Mod. Phys. C 21, 433 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    M. Tumminello, F. Lillo, R.N. Mantegna, J. Econ. Behav. Org. 75, 40 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Kwapień, S. Drożdż, Phys. Rep. 515, 115 (2012)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Ren, W.X. Zhou, PLoS One 9, e97711 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    X.F. Jiang, T.T. Chen, B. Zheng, Sci. Rep. 4, e5321 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    H. Chen, Y. Mai, S.P. Li, Physica A 414, 360 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C.X. Yang, X.H. Zhu, Q. Li, Y.H. Chen, Q.Q. Deng, Physica A 415, 1 (2014)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    B. Zheng, X.F. Jiang, P.Y. Ni, Chin. Phys. B 23, e78903 (2014)CrossRefGoogle Scholar
  16. 16.
    F.Y. Ouyang, B. Zheng, X.F. Jiang, PLoS One 10, e139420 (2015)Google Scholar
  17. 17.
    J.J. Chen, L. Tan, B. Zheng, Sci. Rep. 5, e8399 (2015)CrossRefGoogle Scholar
  18. 18.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L.A. NunesAmaral, T. Guhr, H.E. Stanley, Phys. Rev. E 65, 066126 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    J. Shen, B. Zheng, Europhys. Lett. 86, 48005 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    X.F. Jiang, B. Zheng, Europhys. Lett. 97, 48006 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    J.D. Farmer, Comput. Sci. Eng. 1, 26 (1999)CrossRefGoogle Scholar
  22. 22.
    R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, Cambridge, 2000)Google Scholar
  23. 23.
    J.P. Bouchaud, M. Potters, Theory of Financial Risks: From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, 2000)Google Scholar
  24. 24.
    M. Tumminello, T. Aste, T. Di Matteo, R.N. Mantegna, Proc. Natl. Acad. Sci. USA 102, 10421 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Tumminello, T. Di Matteo, T. Aste, R.N. Mantegna, Eur. Phys. J. B 55, 209 (2007)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Aste, W. Shaw, T. Di Matteo, New J. Phys. 12, 085009 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    D.M. Song, M. Tumminello, W.X. Zhou, R.N. Mantegna, Phys. Rev. E 84, 026108 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    M. Rosvall, C.T. Bergstrom, Proc. Natl. Acad. Sci. USA 105, 1118 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    J. Hasbrouck, J. Finance 46, 179 (1991)CrossRefGoogle Scholar
  31. 31.
    P. Gopikrishnan, V. Plerou, X. Gabaix, H.E. Stanley, Phys. Rev. E 62, R4493 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    F. Lillo, J.D. Farmer, R. Mantegna, Nature 421, 129 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    M. Lim, R. Coggins, Quant. Finance 5, 365 (2005)CrossRefGoogle Scholar
  35. 35.
    Z. Eisler, J. Kertész, Phys. Rev. E 73, 046109 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    W.X. Zhou, Quant. Finance 12, 1253 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S.S. Chen, J. Bank. Finance 36, 1781 (2012)CrossRefGoogle Scholar
  38. 38.
    L. Kristoufek, Physica A 428, 194 (2015)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Chen, T. Qiu, X.F. Jiang, L.X. Zhong, X.R. Wu, Physica A 424, 73 (2015)CrossRefGoogle Scholar
  40. 40.
    S.Y. Lee, D. Hwang, M.J. Kim, I.G. Koh, S.Y. Kim, Physica A 390, 837 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    H.L. Zeng, R. Lemoy, M. Alava, J. Stat. Mech-Theory E 7, P07008 (2014)CrossRefGoogle Scholar
  42. 42.
    X.G. Yan, C. Xie, G.J. Wang, Int. J. Mod. Phys. B 29, 1550161 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    J.M. Karpoff, J. Financ. Quant. Anal. 22, 109 (1987)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Li-Ling Su
    • 1
  • Xiong-Fei Jiang
    • 2
  • Sai-Ping Li
    • 3
  • Li-Xin Zhong
    • 4
  • Fei Ren
    • 1
    • 5
  1. 1.School of Business, East China University of Science and TechnologyShanghaiP.R. China
  2. 2.College of Information Engineering, Ningbo Dahongying UniversityNingboP.R. China
  3. 3.Institute of Physics, Academia SinicaTaipeiTaiwan
  4. 4.School of Finance, Zhejiang University of Finance and EconomicsHangzhouP.R. China
  5. 5.School of Science, East China University of Science and TechnologyShanghaiP.R. China

Personalised recommendations