Ab-initio optical properties and dielectric response of open-shell spinel zinc ferrite

Regular Article

Abstract

In the present work, we predict the optical properties and the dielectric response spectrum of the spinel zinc ferrite Zn2Fe4O8, and show in particular the impact of many-body effects on the absorption spectrum, using advanced many-body perturbation approach. The excitonic effects remarkably redistribute the spectral weights causing a red-shift of 1.6 eV of the maximum of the independent particle G0W0 (IP-G0W0) towards the electron-hole affected spectrum. The excitation spectrum of the zinc ferrite exhibits a low lying doubly degenerated bound dark exciton at 1.84 eV with a fully symmetric excited-state density, and a narrow optical gap setting on at 1.93 eV. We further analyse the electronic transitions and exciton density distributions giving insights to the nature of excitations. The dielectric response of Zn2Fe4O8 shows a particular sensitivity to the excitations higher than the electronic band gap, however it abruptly becomes passive to the incoming electro-magnetic wave and propagates to the negative regions at high energy regimes.

Keywords

Solid State and Materials 

References

  1. 1.
    M. Sugimoto, J. Amer. Ceram. Soc. 82, 269 (1999)CrossRefGoogle Scholar
  2. 2.
    D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51 (2007)CrossRefGoogle Scholar
  3. 3.
    C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53, 1488 (2014)CrossRefGoogle Scholar
  4. 4.
    M.S. Park, J. Kim, K.J. Kim, J.W. Lee, J.H. Kim, Y.P. Yamauchi, Phys. Chem. Chem. Phys. 17, 30963 (2015)CrossRefGoogle Scholar
  5. 5.
    E. Casbeer, V.K. Sharma, X.Z. Lee, Sep. Purif Technol. 87, 1 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Hedin, Phys. Rev. Lett. A 139, 796 (1965)ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)Google Scholar
  9. 9.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    A. Marini, C. Hogan, M. Gruening, D. Varsano, Comput. Phys. Commun. 180, 1392 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Matsumoto, M. Omae, I.Watanabe, E. Sato, J. Electrochem. Soc. 133, 711 (1986)CrossRefGoogle Scholar
  12. 12.
    P.H. Borse et al., J. Korean Phys. Soc. 55, 1572 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Boumaza et al., Applied Energy 87, 2230 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Dom et al., Rsc Adv. 2, 12782 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Kokalj, Comp. Mater. Sci. 28, 155 (2003)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mulliken Center for Theoretical Chemistry, University of BonnBonnGermany

Personalised recommendations