Spin waves on chains of YIG particles: dispersion relations, Faraday rotation, and power transmission

Regular Article

Abstract

We calculate the dispersion relations for spin waves on a periodic chain of spherical or cylindrical Yttrium Iron Garnet (YIG) particles. We use the quasistatic approximation, appropriate when kd ≪ 1, where k is the wave number and d the interparticle spacing. In this regime, because of the magnetic dipole-dipole interaction between the localized magnetic excitations on neighboring particles, dispersive spin waves can propagate along the chain. The waves are analogous to plasmonic waves generated by electric dipole-dipole interactions between plasmons on neighboring metallic particles. The spin waves can be longitudinal (L), transverse (T), or elliptically polarized. We find that a linearly polarized spin wave undergoes a Faraday rotation as it propagates along the chain. The amount of Faraday rotation can be tuned by varying the off-diagonal component of the permeability tensor. We also discuss the possibility of wireless power transmission along the chain using these coupled spin waves.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S.A. Maier, P.G. Kik, A.H. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, R16356 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    S.Y. Park, D. Stroud, Phys. Rev. B 69, 125418 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    N.A. Pike, D. Stroud, J. Opt. Soc. Amer. B 30, 1127 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    N.A. Pike, D. Stroud, J. Appl. Phys. 119, 113103 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Md. M. Hossain, A. Antonello, M. Gu, Opt. Express 20, 17044 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Li, W. Wang, Y. Chen, M. Yan, L. Tong, M. Qiu, IEEE J. Selected Topics in Quantum Electronics 17, 1107 (2011)CrossRefGoogle Scholar
  8. 8.
    W.H. Weber, G.W. Ford, Phys. Rev. B 70, 125429 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    A.D. Karenowska, A.D. Petterson, M.J. Peterer, E.B. Magnusson, P.J. Leek, arXiv:1502.06263 (2015)
  10. 10.
    R.W. Damon, H. Van de Vaart, Proc. IEEE 53, 348 (1965)CrossRefGoogle Scholar
  11. 11.
    A. Kreisel, F. Sauli, L. Bartosch, P. Kopietz, Eur. Phys. J. B 71, 59 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Optical Metamaterials: Fundamentals and Applications, edited by Wenshan Cai, Vladimir Shalaev (Springer, New York, 2010), Chap. 5Google Scholar
  13. 13.
    V. Boucher, D. Menard, Phys. Rev. B 81, 174404 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    R.V. Mikhaylovskiy, E. Hendry, V.V. Kruglyak, Phys. Rev. B 82, 195446 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    O. Dmytriiev, M. Dvornik, R.V. Mikhaylovskiy, M. Franchin, H. Fangohr, L. Giovannini, F. Montoncello, D.V. Berkov, E.K. Semonova, N.L. Gorn, A. Prabhakar, V.V. Kuglyak, Phys. Rev. B 86, 104405 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Mruczkiewicz, M. Krawczyk, R.V. Mikhaylovskiy, V.V. Kruglyak, Phys. Rev. B 86, 024425 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Y.M. Strelniker, D.J. Bergman, Eur. Phys. J. Appl. Phys. 7, 19 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Wang, Y.D. Chong, J.D. Joannopoulos, M. Soljacic, Phys. Rev. Lett. 100, 013905 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A.B. Khanikaev, A.V. Baryshev, A.A. Fedyayin, A.B. Granovsky, M. Inoue, Opt. Express 15, 6612 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    N. Tesla, Apparatus for transmitting electrical energy, U.S. Patent 1,119,732, 1914Google Scholar
  22. 22.
    N. Tesla, System of Electrical Lighting, U.S. Patent 454, 622, 1891Google Scholar
  23. 23.
    J.L.W. Li, in Asia-Pacific Microwave Conference 2011 (2011), pp. 86–89Google Scholar
  24. 24.
    S. Javadi, A. Mohemedi, in Proceedings of the International Conference on Wireless Networks (ICWN) (2013)Google Scholar
  25. 25.
    A. Kur, Science 83, 1143254 (2007)Google Scholar
  26. 26.
    D. Shiffler, R. Sevior, E. Luchinskaya, E. Stranford, W. Tang, D. French. IEEE Trans. Plasma Sci. 41, 1679 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Kimura, I. Shindo, J. Cryst. Growth 41, 192 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    R.C. Linares, R.B. McGraw, J.B. Schroeder, J. Appl. Phys. 36, 2884 (1965)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater, Adv. Mater. 13, 1501 (2001)CrossRefGoogle Scholar
  30. 30.
    A.F. Koenderink, A. Polman, Phys. Rev. B 74, 033402 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Osborn, Phys. Rev. 67, 351 (1945)ADSCrossRefGoogle Scholar
  32. 32.
    A.H. Moorish, The Physical Principles of Magnetism (John Wiley and Sons, 1965)Google Scholar
  33. 33.
    D. Pozar, Microwave Engineering (Addison-Wesley Publishing Company, 1990)Google Scholar
  34. 34.
    R.O. Cunha, J. Holanda, L.H. Vilela-Leao, A. Azevedo, R.L. Rodriguez-Suarez, S.M. Rezende, Appl. Phys. Lett. 106, 192403 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    H. Yu, O. d’Allivy Kelly, V. Cros, R. Bernard, P. Bortolotti, A. Anane, F. Brandl, R. Huber, I. Stasinopoulos, D. Grundler, Sci. Rep. 4, 6848 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    T. Clausen, J. Pure Appl. Maths. 8, 298 (1832)Google Scholar
  37. 37.
    H.P. Fu, R.Y. Yong, Y.J. Wu, G.Q. Di, B. Xu, Y. Zheng, D.G. Wei, J. Magn. Magn. Mater. 21, 2584 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusUSA
  2. 2.Department of PhysicsUniversity of LiegeLiegeBelgium

Personalised recommendations