Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

Regular Article

Abstract

Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization mzfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on mzfs. The superconducting effective gap is renormalized by a factor η(mzfs), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of mzfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of mzfs, the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

Keywords

Solid State and Materials 

References

  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    M. Konig et al., Science 318, 766 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Phys. Rev. B 81, 184525 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Nilsson, A.R. Akhmerov, C.W.J. Beenakker, Phys. Rev. Lett. 101, 120403 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A.R. Akhmerov, J. Nilsson, C.W.J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J. Alicea, Phys. Rev. B 81, 125318 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    F.S. Bergeret, A.F. Volkov, K.B. Efetov, Phys. Rev. Lett. 86, 4096 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    T.S. Khaire, M.A. Khasawneh, W.P. Pratt, N.O. Birge, Phys. Rev. Lett. 104, 137002 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F. Crepin, P. Burset, B. Trauzettel, Phys. Rev. B 92, 100507 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    N. Read, D. Green, Phys. Rev. B 61, 10267 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    H. Kambara, S. Kashiwaya, H. Yaguchi, Y. Asano, Y. Tanaka, Y. Maeno, Phys. Rev. Lett. 101, 267003 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Y, Tsutsumi, T. Kawakami, T. Mizushima, M. Ichioka, K. Machida, Phys. Rev. Lett. 101, 135302 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    S. Tewari, S.D. Sarma, Ch. Nayak, Ch. Zhang, P. Zoller, Phys. Rev. Lett. 98, 010506 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    M. Sato, Y. Takahashi, S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Tanaka, T. Yokoyama, N. Nagaosa, Phys. Rev. Lett. 103, 107002 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    L. Fu, Phys. Rev. Lett. 104, 056402 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    M. Snelder, M. Veldhorst, A.A. Golubov, A. Brinkman, Phys. Rev. B 87, 104507 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, Phys. Rev. Lett. 104, 067001 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A.I. Buzdin, L.N. Bulaevskij, S.V. Panyukov, Pisma Zh. Eksp. Teor. Fiz. 35, 147 (1982)Google Scholar
  32. 32.
    P. Burset, B. Lu, G. Tkachov, Y. Tanaka, E.M. Hankiewicz, B. Trauzettel, Phys. Rev. B 92, 205424 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103, 237001 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    J. Nussbaum, T.L. Schmidt, Ch. Bruder, R.P. Tiwari, Phys. Rev. B 90, 045413 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R. Vali, H.F. Khouzestani, Eur. Phys. J. B 87, 25 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    M. Khezerlou, H. Goudarzi, Physica C 508, 6 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. Fonseca, W.A. Moura-Melo, A.R. Pereira, Eur. Phys. J. B 86, 481 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    J. Yuan, Y. Zhang, J. Zhang, Z. Cheng, Eur. Phys. J. B 86, 36 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    H. Goudarzi, M. Khezerlou, J. Alilou, J. Super. Novel Mag. 26, 3355 (2013)CrossRefGoogle Scholar
  40. 40.
    J.P. Zhang, J.H. Yuan, Eur. Phys. J. B 85, 100 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962)ADSCrossRefGoogle Scholar
  42. 42.
    B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962)ADSCrossRefGoogle Scholar
  43. 43.
    J. Hubbard, Proc. Roy. Soc. Lond. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  44. 44.
    P.G. de Gennes, Superconductivity of Metals and Alloys (W.A. Benjamin, New York, 1966)Google Scholar
  45. 45.
    B.J. Powell, J.F. Annett, B.L. Gyorffy, J. Phys. A 36, 9289 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Science, Urmia UniversityUrmiaIran

Personalised recommendations