Spin orientation and excitation of magnetic nanocluster on metal surface

Regular Article


The spin orientation and excitation of the ferromagnetic nanocluster on the magnetic metal surface are studied numerically. We show that localized magnetic excitation modes are generated by the spin fluctuation of the cluster, when the ferromagnetic interaction J′ between the cluster and the metal surface is small and the spins in the cluster are oriented in the opposite direction with those of the metal surface by the external field. This magnetic structure is similar to the domain wall (DW) structure of a ferromagnetic wire, both sides of which connect with metal surfaces. As the interaction J′ increases, the sign of the thermal average of the spins in the cluster changes, i.e., the spin-flip takes place. In this time, the magnetic fluctuation of the cluster becomes large and the magnetic excitation energies, except for that of one excitation mode, overlap with the excitation spectrum of the spin wave. We also show that, by the overlap, sharp peaks and dips occur in the excitation spectrum of the spin wave.


Mesoscopic and Nanoscale Systems 


  1. 1.
    K. Hong, N. Giordano, J. Magn. Magn. Mater. 151, 396 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Otani, K. Fukamachi, O. Kitakami, Y. Shimada, B. Pannetier, J.P. Nozieres, T. Matsuda, A. Tonomura, in Magnetic Ultrathin Films, Multilayers and Surfaces, edited by J. Tobin (Materials Research Society, Pittsburgh, 1997)Google Scholar
  3. 3.
    U. Ruediger, J. Yu, S. Zhang, A.D. Kent, S.S.P. Parkin, Phys. Rev. Lett. 80, 5639 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    T. Taniyama, I. Nakatani, T. Namikawa, Y. Yamazaki, Phys. Rev. Lett. 82, 2780 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    G. Tatara, H. Fukuyama, Phys. Rev. Lett. 78, 3773 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    J.F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S.M. Thompson, J.M.D. Coey, Phys. Rev. Lett. 77, 1580 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    P.M. Levy, S. Zhang, Phys. Rev. Lett. 79, 5110 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    H. Kakizakai, K. Yamada, M. Kawaguchi, K. Shimamura, S. Fukuyama, N. Ishiwata, D. Chiba, T. Ono, Jpn J. Appl. Phys. 52, 070206 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    S.N. Gordeev, J.-M.L. Beaujour, G.J. Bowden, B.D. Rainford, P.A.J. de Groot, R.C.C. Ward, M.R. Wells, A.G.M. Jansen, Phys. Rev. Lett. 87, 186808 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    R. Danneau, P. Warin, J.P. Attané, I. Petej, C. Beigné, C. Fermon, O. Klein, A. Marty, F. Ott, Y. Samson, M. Viret, Phys. Rev. Lett. 88, 157201 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Z.Y. Zhang, S.J. Xiong, Phys. Rev. B 67, 094412 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    N. García, M. Muñoz, Y.W. Zhao, Phys. Rev. Lett. 82, 2923 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Ooka, T. Ono, H. Miyajima, J. Magn. Magn. Mater. 226–230, 1848 (2001)CrossRefGoogle Scholar
  14. 14.
    M. Shimizu, E. Saitoh, H. Miyajima, Y. Otani, J. Magn. Magn. Mater. 239, 243 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Sullivan, D.A. Boehm, D.A. Ateya, S.Z. Hua, H.D. Chopra, Phys. Rev. B 71, 024412 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    S.H. Chung, M. Muñoz, N. García, W.F. Egelhoff, R.D. Gomez, Phys. Rev. Lett. 89, 287203 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M. Gabureac, M. Viret, F. Ott, C. Fermon, Phys. Rev. B 69, 100401 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Viret, S. Berger, M. Gabureac, F. Ott, D. Olligs, I. Petej, J.F. Gregg, C. Fermon, G. Francinet, G. Le Goff, Phys. Rev. B 66, 220401(R) (2002)ADSCrossRefGoogle Scholar
  19. 19.
    A. Nakamura, M. Brandbyge, L.B. Hansen, K.W. Jacobsen, Phys. Rev. Lett. 82, 1538 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    R. Vardimon, M. Klionsky, O. Tal, Nano Lett. 15, 3894 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    C.H. Hsu, Y.H. Chu, C.I. Lu, P.J. Hsu, S.W. Chen, W.J. Hsueh, C.C. Kaun, M.T. Lin, J. Phys. Chem. C 119, 3374 (2015)CrossRefGoogle Scholar
  22. 22.
    X. Fei, G. Wu, V. Lopez, G. Lu, H.J. Gao, L. Gao, J. Phys. Chem. C 119, 11975 (2015)CrossRefGoogle Scholar
  23. 23.
    S.V. Aradhya, L. Venkataraman, Nat. Nanotech. 8, 399 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. Nakamura, S. Nonoyama, Phys. Lett. A 280, 227 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    A. Nakamura, S. Nonoyama, Phys. Lett. A 324, 51 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    S. Lounis, P.H. Dederichs, S. Blügel, Phys. Rev. Lett. 101, 107204 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Holzberger, T. Schuh, S. Blügel, S. Lounis, W. Wulfhekel, Phys. Rev. Lett. 101, 157206 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    R.N. Igarashi, I.P. Miranda, L.T.F. Eleno, A.B. Klautau, H.M. Petrilli, J. Phys.: Condens. Matter 28, 326001 (2016)Google Scholar
  29. 29.
    L.Néel, in Low Temperature Physics, edited by C. Dewitt, B. Dreyfus, P.G. de Gennes (Gordon and Beach, New York, 1962)Google Scholar
  30. 30.
    X.G. Zhao, Z. Tang, J. Appl. Phys. 111, 084321 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    J. Zhang, L. Yu, Q. Song, Y. Du, Ann. Phys. 358, 159 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Creative Technology EngineeringNational Institute of TechnologyTokushimaJapan
  2. 2.Faculty of Education, Art, and Science, Yamagata UniversityYamagataJapan

Personalised recommendations