Spin orientation and excitation of magnetic nanocluster on metal surface

Regular Article


The spin orientation and excitation of the ferromagnetic nanocluster on the magnetic metal surface are studied numerically. We show that localized magnetic excitation modes are generated by the spin fluctuation of the cluster, when the ferromagnetic interaction J′ between the cluster and the metal surface is small and the spins in the cluster are oriented in the opposite direction with those of the metal surface by the external field. This magnetic structure is similar to the domain wall (DW) structure of a ferromagnetic wire, both sides of which connect with metal surfaces. As the interaction J′ increases, the sign of the thermal average of the spins in the cluster changes, i.e., the spin-flip takes place. In this time, the magnetic fluctuation of the cluster becomes large and the magnetic excitation energies, except for that of one excitation mode, overlap with the excitation spectrum of the spin wave. We also show that, by the overlap, sharp peaks and dips occur in the excitation spectrum of the spin wave.


Mesoscopic and Nanoscale Systems 

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Creative Technology EngineeringNational Institute of TechnologyTokushimaJapan
  2. 2.Faculty of Education, Art, and Science, Yamagata UniversityYamagataJapan

Personalised recommendations