Large scale spatio-temporal behaviour in surface growth

Scaling and dynamics of slow height variations in generalized two-dimensional Kuramoto-Sivashinsky equations
  • Vaidas Juknevičius
  • Julius Ruseckas
  • Jogundas Armaitis
Regular Article

Abstract

This paper presents new findings concerning the dynamics of the slow height variations in surfaces produced by the two-dimensional isotropic Kuramoto-Sivashinsky equation with an additional nonlinear term. In addition to the disordered cellular patterns of specific size evident at small scales, slow height variations of scale-free character become increasingly evident when the system size is increased. This paper focuses on the parameter range in which the kinetic roughening with eventual saturation in surface roughness and coarseness is obtained, and the statistical and dynamical properties of surfaces in the long-time stationary regime are investigated. The resulting long-range scaling properties of the saturated surface roughness consistent with the power-law shape of the surface spectrum at small wave numbers are obtained in a wider parameter range than previously reported. The temporal properties of these long-range height variations are investigated by analysing the time series of surface roughness fluctuations. The resulting power-spectral densities can be expressed as a generalized Lorentzian whose cut-off frequency varies with system size. The dependence of this lower cut-off frequency on the smallest wave number connects spatial and temporal properties and gives new insight into the surface evolution on large scales.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.C. Harris, Principles of archaeological stratigraphy (Elsevier, 2014)Google Scholar
  2. 2.
    G.S. May, S.M. Sze, Fundamentals of semiconductor fabrication (John Wiley & Sons, New York, 2004)Google Scholar
  3. 3.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song et al., Nat. Nanotechnol. 5, 574 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  5. 5.
    M. Castro, R. Cuerno, M. Nicoli, L. Vzquez, J.G. Buijnsters, New J. Phys. 14, 103039 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    M. Hairer, Ann. Math. 178, 559 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. Juknevicius, Eur. Phys. J. B 89, 1 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Raible, S. Mayr, S. Linz, M. Moske, K. Samwer et al., Europhys. Lett. 50, 61 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E 64, 031506 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M. Raible, S.J. Linz, P. Hänggi, Eur. Phys. J. B: Condens. Matter Complex Syst. 27, 435 (2002)CrossRefGoogle Scholar
  11. 11.
    R. Cuerno, A.L. Barabási, Phys. Rev. Lett. 74, 4746 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    T. Kim, C.M. Ghim, H. Kim, D. Kim, D. Noh, N. Kim, J. Chung, J. Yang, Y. Chang, T. Noh et al., Phys. Rev. Lett. 92, 246104 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M. Castro, R. Cuerno, L. Vázquez, R. Gago, Phys. Rev. Lett. 94, 016102 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Gago, L. Vázquez, O. Plantevin, T.H. Metzger, J. Muñoz-García, R. Cuerno, M. Castro, Appl. Phys. Lett. 89, 233101 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    R. Cuerno, M. Castro, J. Muñoz-García, R. Gago, L. Vázquez, Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms 269, 894 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. Muñoz-García, R. Cuerno, M. Castro, Phys. Rev. E 74, 050103 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    J. Muñoz-García, R. Gago, L. Vázquez, J.A. Sánchez-García, R. Cuerno, Phys. Rev. Lett. 104, 026101 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    G. Sivashinsky, Acta Astronaut. 4, 1177 (1977)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    D. Michelson, G. Sivashinsky, Acta Astronaut. 4, 1207 (1977)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Sivashinsky, Acta Astronaut. 6, 569 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Kuramoto, Chemical oscillations, waves, and turbulence (Springer-Verlag, 1984)Google Scholar
  22. 22.
    K. Sneppen, J. Krug, M. Jensen, C. Jayaprakash, T. Bohr, Phys. Rev. A 46, R7351 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    C. Jayaprakash, F. Hayot, R. Pandit, Phys. Rev. Lett. 71, 12 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    B.M. Boghosian, C.C. Chow, T. Hwa, Phys. Rev. Lett. 83, 5262 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    M. Paniconi, K. Elder, Phys. Rev. E 56, 2713 (1997)ADSCrossRefGoogle Scholar
  26. 26.
    M. Rost, J. Krug, Phys. Rev. Lett. 75, 3894 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    K.B. Lauritsen, R. Cuerno, H.A. Makse, Phys. Rev. E 54, 3577 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    K. Dreimann, S.J. Linz, Chem. Phys. 375, 606 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    C. Diddens, S.J. Linz, Eur. Phys. J. B 86, 1 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Diddens, S.J. Linz, Eur. Phys. J. B 88, 1 (2015)CrossRefGoogle Scholar
  31. 31.
    V. Yakhot, Phys. Rev. A 24, 642 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    I. Procaccia, M.H. Jensen, V.S. Lvov, K. Sneppen, R. Zeitak, Phys. Rev. A 46, 3220 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    M. Kardar, G. Parisi, Y.C. Zhang, Phys. Rev. Lett. 56, 889 (1986)ADSCrossRefGoogle Scholar
  34. 34.
    M.J. Vold, J. Coll. Sci. 18, 684 (1963)CrossRefGoogle Scholar
  35. 35.
    F. Family, T. Vicsek, J. Phys. A: Math. Gen. 18, L75 (1985)ADSCrossRefGoogle Scholar
  36. 36.
    V. Lvov, I. Procaccia, Phys. Rev. Lett. 72, 307 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    C. Jayaprakash, F. Hayot, R. Pandit, Phys. Rev. Lett. 72, 308 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    M. Nicoli, E. Vivo, R. Cuerno, Phys. Rev. E 82, 045202 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    P. Manneville, H. Chaté, Phys. D: Nonlinear Phenom. 96, 30 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    S.F. Edwards, D. Wilkinson, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (The Royal Society, 1982), Vol. 381, pp. 17–31Google Scholar
  41. 41.
    T. Nattermann, L.H. Tang, Phys. Rev. A 45, 7156 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    M. Raible, S.J. Linz, P. Haenggi, Acta Phys. Pol. B 33, 1049 (2002)ADSGoogle Scholar
  43. 43.
    M. Raible, S.J. Linz, P. Hänggi, Phys. Rev. E 62, 1691 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    J. Muñoz-García, R. Cuerno, M. Castro, J. Phys.: Condens. Matter 21, 224020 (2009)ADSGoogle Scholar
  45. 45.
    M. Castro, R. Cuerno, Phys. Rev. Lett. 94, 139601 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    W.M. Tong, R.S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994)ADSCrossRefGoogle Scholar
  47. 47.
    A.L. Barabási, H.E. Stanley, Fractal concepts in surface growth (Cambridge University Press, 1995)Google Scholar
  48. 48.
    O. Bikondoa, D. Carbone, V. Chamard, T.H. Metzger, J. Phys.: Condens. Matter 24, 445006 (2012)Google Scholar
  49. 49.
    G. Palasantzas, Phys. Rev. B 48, 14472 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Europhys. Lett. 4, 973 (1987)ADSCrossRefGoogle Scholar
  51. 51.
    J. Gao, H. Cai, Phys. Lett. A 270, 75 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    H. Kantz, T. Schreiber, Nonlinear time series analysis (Cambridge University Press, 2004), Vol. 7Google Scholar
  54. 54.
    A.M. Yaglom, An introduction to the theory of stationary random functions (Courier Corporation, 2004)Google Scholar
  55. 55.
    K.B. Lauritsen, H.C. Fogedby, J. Stat. Phys. 72, 189 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    N.G. Van Kampen, Stochastic processes in physics and chemistry (Elsevier, 1992), Vol. 1Google Scholar
  57. 57.
    G. Foltin, K. Oerding, Z. Rácz, R.L. Workman, R.K.P. Zia, Phys. Rev. E 50, R639 (1994)ADSCrossRefGoogle Scholar
  58. 58.
    Z. Rácz, M. Plischke, Phys. Rev. E 50, 3530 (1994)ADSCrossRefGoogle Scholar
  59. 59.
    T. Antal, M. Droz, G. Györgyi, Z. Rácz, Phys. Rev. E 65, 046140 (2002)ADSCrossRefGoogle Scholar
  60. 60.
    F.A. Reis, J. Stat. Mech.: Theory Exp. 2015, P11020 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vaidas Juknevičius
    • 1
  • Julius Ruseckas
    • 1
  • Jogundas Armaitis
    • 1
  1. 1.Institute of Theoretical Physics and Astronomy, Vilnius UniversityVilniusLithuania

Personalised recommendations