A transition in the spectral statistics of quantum optical model by different electromagnetic fields

Regular Article

Abstract

In this paper, we have considered the effects of different quantized electromagnetic fields on the spectral statistics of two-level atoms. The Berry-Robnik distribution and the maximum likelihood estimation technique are used to analyze the effect of the mean photon numbers, the two level atoms numbers and also the quantum number of considered states on the fluctuation properties of different systems which are described by different sets of the Dicke Hamiltonian’s parameters. Our results describe the obvious effect of mean photon number on the spectral statistics and show more regular dynamics when this quantity reaches 700. Also, we observed universality in the spectral statistics of considered systems when the number of two level atoms approaches an unrealistic limit (NA ~ 200) and there are some suggestions about the effect of the quantum number of selected levels and the atom-field coupling constant on level statistics.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    H.A. Weidenmuller, G.E. Mitchel, Rev. Mod. Phys. 81, 539 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    C.W.J. Beenakker, in The Oxford Handbook of Random Matrix Theory, edited by G. Akemann, J. Baik, P. Di Francesco (Oxford University Press, 2011)Google Scholar
  3. 3.
    J.M.G. Gómez et al., Phys. Rep. 499, 103 (2011)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Graham, M. Hohenerbach, Z. Phys. B 57, 233 (1984)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A.Y. Abul-Magd et al., Ann. Phys. 321, 560 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    A. Relano et al., Phys. Rev. Lett. 89, 244102 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    F.M. Izrailev, Phys. Rep. 196, 299 (1990)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M.A. Jafarizadeh et al., Nucl. Phys. A 890-891, 29 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R. Xie, D. Liu, G. Xu, Z. Phys. B 99, 605 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    R. Graham, M. Hohenerbach, Phys. Lett. A 101, 61 (1984)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Ku, Phys. Rev. Lett. 54, 1343 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    S. Swain, Phys. Lett. A 39, 143 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    H. Hirooka et al., Phys. Lett. A 101, 115 (1984)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Schmutz, Phys. Lett. A 103, 24 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    T.A. Brody, Lett. Nuovo Cimento 7, 482 (1973)CrossRefGoogle Scholar
  17. 17.
    C.H. Lewenkopt et al., Phys. Lett. A 155, 113 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    A. Maciejewski, M. Przybylska, T. Stachowiak, Phys. Lett. A 378, 16 (2014)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Z. Harsij et al., Phys. Rev. A 86, 063803 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P.W. Milonni, J.R. Ackerhalt, H.W. Galbraith, Phys. Rev. Lett. 50, 966 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    A. Nath, D.S. Ray, Phys. Lett. A 116, 104 (1986)ADSCrossRefGoogle Scholar
  22. 22.
    T. Deguchi1, P.K. Ghosh, K. Kudo, Phys. Rev. E 80, 026213 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Bastarrachea-Magnani et al., Phys. Rev. E 93, 022215 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C. Emary, T. Brandes, Phys. Rev. E 67, 066203 (2003)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    S. Ray, A. Ghosh, S. Sinha, Phys. Rev. E 94, 032103 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    L. Bao, F. Pan, J. Lu, J.P. Draayer, Entropy 17, 5022 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    P. Perez-Fernández et al., Phys. Rev. E 83, 046208 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    M.T. Batchelor, H.-Q. Zhou, Phys. Rev. A 91, 053808 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    S. He, L. Duan, Q. Chen, New J. Phys. 17, 043033 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M.G. Rozman, V.I. Rupasov, Phys. Lett. A 137, 197 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    S. Wimberger, Nonlinear Dynamics and Quantum Chaos (Springer International Publishing, 2014)Google Scholar
  32. 32.
    F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Berlin, Heidelberg, 2010)Google Scholar
  33. 33.
    M.V. Berry, M. Robnik, J. Phys. A 17, 2413 (1984)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    H. Sabri et al., Random Matrices: Theory and Applications 3, 1450017 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    L. Huang, Y. Lai, C. Grebog, Phys. Rev. E 81, 055203 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    P. Pérez-Fernández et al., Phys. Rev. E 83, 046208 (2011)CrossRefGoogle Scholar
  37. 37.
    K. Zyczkowski, G. Lenz, Z. Phys. B 82, 299 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    M. Serbyn, J.E. Moore, Phys. Rev. B 93, 041424 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    H. Venzl, A.J. Daley, F. Mintert, A. Buchleitner, Phys. Rev. E 79, 056223 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    D. Fischer, D. Hoffmann, S. Wimberger, Phys. Rev. A 93, 043620 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    V. Žnidarič, M. Žnidarič, J. Phys. A 45, 125204 (2012)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    K. Sacha, J. Zakrzewski, Phys. Rev. Lett. 86, 2269 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    H. Sabri, Nucl. Phys. A 941, 364 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    V. Paar, D. Vorkapic, Phys. Lett. B 205, 7 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    V. Paar, D. Vorkapic, Phys. Rev. C 41, 2397 (1990)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TabrizTabrizIran

Personalised recommendations