Current distributions in stripe Majorana junctions

Regular Article

Abstract

We calculate current and density distributions in stripe (2D planar) junctions between normal and Majorana nanowires having a finite (y) transverse length. In presence of a magnetic field with vertical and in-plane components, the y-symmetry of the charge current distribution in the normal lead changes strongly across the Majorana phase transition: from center-symmetric if a Majorana mode is present to laterally-shifted (as expected by the Hall effect) if the field is tilted such as to destroy the Majorana mode due to the projection rule. We compare quasi-particle and charge distributions of current and density, as well as spin magnetizations. The Majorana mode causes opposite spin accumulations on the transverse sides of the junction and the emergence of a spin current.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    C.W.J. Beenakker, Ann. Rev. Condens. Matter Phys. 4, 113 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013)ADSGoogle Scholar
  4. 4.
    M. Franz, Nat. Nanotechnol. 8, 149 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    V. Mourik, K. Zuo, S. Frolov, S. Plissard, E. Bakkers, L. Kouwenhoven, Science 336, 1003 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012)CrossRefGoogle Scholar
  11. 11.
    A.D.K. Finck, D.J. Van Harlingen, P.K. Mohseni, K. Jung, X. Li, Phys. Rev. Lett. 110, 126406 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    H. Zhang et al., arXiv:1603.04069 (2016)
  13. 13.
    R.M. Lutchyn, T.D. Stanescu, S. Das Sarma, Phys. Rev. Lett. 106, 127001 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Lutchyn, M.P.A. Fisher, Phys. Rev. B 84, 214528 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    T.D. Stanescu, R.M. Lutchyn, S. Das Sarma, Phys. Rev. B 84, 144522 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    A.C. Potter, P.A. Lee, Phys. Rev. Lett. 105, 227003 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A.C. Potter, P.A. Lee, Phys. Rev. B 83, 094525 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    K.T. Law, P.A. Lee, Phys. Rev. B 84, 081304 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    S. Tewari, J.D. Sau, Phys. Rev. Lett. 109, 150408 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    P. San-Jose, E. Prada, R. Aguado, Phys. Rev. Lett. 112, 137001 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J. Klinovaja, D. Loss, Eur. Phys. J. B 87, 171 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    P. Wang, J. Liu, Q.f. Sun, X.C. Xie, Phys. Rev. B 91, 224512 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    M. Wimmer, A.R. Akhmerov, J.P. Dahlhaus, C.W.J. Beenakker, New J. Phys. 13, 053016 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    J.S. Lim, R. Lopez, L. Serra, Europhys. Lett. 103, 37004 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    J. Osca, R. López, L. Serra, Eur. Phys. J. B 87, 84 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    J. Osca, L. Serra, Phys. Rev. B 91, 235417 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    B. Nijholt, A.R. Akhmerov, Phys. Rev. B 93, 235434 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    N. Sedlmayr, J.M. Aguiar-Hualde, C. Bena, Phys. Rev. B 93, 155425 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    J. Shabani et al., Phys. Rev. B 93, 155402 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    M. Kjaergaard et al., Nat. Commun. 7, 12841 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    C.W.J. Beenakker, Phys. Rev. B 46, 12841 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Takagaki, Phys. Rev. B 57, 4009 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    J. Osca, L. Serra, J. Phys.: Conf. Ser. 647, 012063 (2015)Google Scholar
  34. 34.
    C.W. Groth, M. Wimmer, A.R. Akhmerov, X. Waintal, New J. Phys. 16, 063065 (2014)ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    L. Serra, Phys. Rev. B 87, 075440 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    HSL. A collection of Fortran codes for large scale scientific computation (2013). http://www.hsl.rl.ac.uk
  38. 38.
    F. Tisseur, K. Meerbergen, SIAM Review 43, 235 (2001)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    H. Xie, F. Jiang, W.E. Sha, Computer Physics Communications 198, 118 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Philadelphia, 1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institut de Física Interdisciplinària i de Sistemes Complexos IFISC (CSIC-UIB)Palma de MallorcaSpain
  2. 2.Departament de Física, Universitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations