Spin and valley dependent line-type resonant peaks in electrically and magnetically modulated silicene quantum structures

Regular Article

Abstract

A barrier with a tunable spin-valley dependent energy gap in silicene could be used as a spin and valley filter. Meanwhile, special resonant modes in unique quantum structure can act as energy filters. Hence we investigate valley and spin transport properties in the potential silicene quantum structures, i.e., single ferromagnetic barrier, single electromagnetic barrier and double electric barriers. Our quantum transport calculation indicates that quantum devices of high accuracy and efficiency (100% polarization), based on modulated silicene quantum structures, can be designed for valley, spin and energy filtering. These intriguing features are revealed by the spin, valley dependent line-type resonant peaks. In addition, line-type peaks in different structure depend on spin and valley diversely. The filter we proposed is controllable by electric gating.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    V. Patrick, D.P. Paola, Q. Claudio, A. Jose, F. Emmanouil, A.M. Carmen, R. Andrea, E. Bénédicte, L.L. Guy, Phys. Rev. Lett 108, 155501 (2012)CrossRefGoogle Scholar
  2. 2.
    C. Daniele, G. Carlo, T. Grazia, F. Marco, M. Alessandro, Adv. Mater. 24, 5088 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Li, C. Eugenio, C. Daniele, G. Carlo, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nano. 10, 227 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Eugenio, S. Emilio, C. Daniele, G. Carlo, B.B.V. Den, H. Michel, F. Marco, M. Alessandro, J. Phys. Chem. C 117, 16719 (2013)CrossRefGoogle Scholar
  5. 5.
    E. Motohiko, New J. Phys. 14, 33003 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Ai, E. Motohiko, T. Yukio, N. Naoto, Phys. Rev. B 88, 085322 (2013)CrossRefGoogle Scholar
  7. 7.
    A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)CrossRefGoogle Scholar
  8. 8.
    C.C. Liu, H. Jiang, Y.G. Yao, Phys. Rev. B 84, 195430 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    A.F. Morpurgo, F. Guinea, Phys. Rev. Lett. 97, 196804 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    D. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 99, 236809 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)CrossRefGoogle Scholar
  14. 14.
    X. Chen, J.W. Tao, Appl. Phys. Lett. 94, 262102 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    X.Q. Wu, H. Meng, J. Appl. Phys. 117, 203903 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    D. Gunlycke, C.T. White, Phys. Rev. Lett. 106, 136806 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Takehito, Phys. Rev. B 87, 241409 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Marko, T. Milan, F.M. Peeters, Phys. Rev. Lett. 113, 046601 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    W.F. Tsai, C.Y. Huang, T.R. Chang, Nat. Commun. 4, 1500 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)CrossRefGoogle Scholar
  21. 21.
    C. Nez, F. Domínguez-Adame, P.A. Orellana, L. Rosales, R.A. Roemer, 2D Materials 3, 025006 (2016)CrossRefGoogle Scholar
  22. 22.
    Kh. Shakouri, H. Simchi, M. Esmaeilzadeh, H. Mazidabadi, F.M. Peeters, Phys. Rev. B 92, 035413 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    R. Stephan, E. Motohiko, Phys. Rev. B 89, 195303 (2014)CrossRefGoogle Scholar
  24. 24.
    Kh. Shakouri, P. Vasilopoulos, V. Vargiamidis, F.M. Peeters, Phys. Rev. B 90, 235423 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    S. Ruchi, S. Arijit, R. Sumathi, Phys. Rev. B 92, 245412 (2015)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, Appl. Phys. Lett. 104, 032105 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    V. Vargiamidis, P. Vasilopoulos, J. Appl. Phys. 117, 094305 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    O.V. Yazyev, Rep. Progr. Phys. 73, 056501 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    H. Haugen, D. Huertas-Hernando, A. Brataas, Phys. Rev. B 77, 115406 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    A. De Martino, L. Dell’Anna, R.Egger, Phys. Rev. Lett. 98, 066802 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    M.R. Masir, P. Vasilopoulos, F.M. Peeters, Appl. Phys. Lett. 93, 242103 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    A. Matulis, F.M. Peeters, P. Vasilopoulos, Phys. Rev. Lett. 72, 1518 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    H.P. Ojeda-Collado, C. Rodrguez-Castellanos, Appl. Phys. Lett. 103, 033110 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    L.F. Sun, Y. Guo, J. Appl. Phys. 109, 123719 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    C.X. Bai, X.D. Zhang, Phys. Rev. B 76, 075430 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physics and State Key Laboratory of Low-Dimensional Quantum PhysicsTsinghua UniversityBeijingP.R. China
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingP.R. China

Personalised recommendations