Skip to main content
Log in

First-principles calculations of SO2 sensing with Si nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

High chemical reactivity and large surface-to-volume ratio have recently led to growing interest in the employment of silicon nanowires (SiNWs) in sensing applications for chemical species detection. The working principle of SiNWs sensors resides in the possibility to induce modifications in their electronic properties via molecular interaction. A detailed analysis of the interaction of Si with molecular compounds is then required to design and optimize NW-based sensors. Here we study the mechanisms of adsorption on SiNWs of SO2, an air pollutant with pernicious effects on humans. First-principles density-functional calculations are performed to calculate the electronic structure of a SO2 molecule adsorbed at a silicon surface in case of undoped substrate and in presence of substitutional subsurface and deep boron impurities. Comparing the results with the case of NO2 adsorption – a similar molecule that, nonetheless has a very different interaction with a Si surface –, we show the specific traits of SO2 interaction: formation of localized states in the band-gap and absence of reactivation of pre-existing and passivated sub-surface impurities. A connection between the modifications in the system electronic structure and the strength of the molecular interaction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rurali, Rev. Mod. Phys. 82, 427 (2010)

    Article  ADS  Google Scholar 

  2. W. Lu, C.M. Lieber, J. Phys. D 39, R387 (2006)

    Article  ADS  Google Scholar 

  3. Y. Cui, Z. Zhong, D. Wang, W. Wang, C. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  4. M. Amato, R. Rurali, Prog. Surf. Sci. 91, 1 (2016)

    Article  ADS  Google Scholar 

  5. M. Mescher, L. de Smet, E. Sudholter, J. Klootwijk, J. Nanosci. Nanotechnol. 13, 5649 (2013)

    Article  Google Scholar 

  6. E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy, M.A. Reed, Nature 445, 519 (2006)

    Article  ADS  Google Scholar 

  7. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber, Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  8. X. Duan, Y. Huang, C.M. Lieber, Nano Lett. 2, 487 (2002)

    Article  ADS  Google Scholar 

  9. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  10. G. Zhang, Y. Ning, Anal. Chim. Acta 749, 1 (2012)

    Article  ADS  Google Scholar 

  11. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  12. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  13. M.Y. Bashouti, K. Sardashti, S.W. Schmitt, M. Pietsch, J. Ristein, H. Haick, S.H. Christiansen, Prog. Surf. Sci. 88, 39 (2013)

    Article  ADS  Google Scholar 

  14. Y. Bunimovich, Y. Shin, W. Yeo, M. Amori, G. Kwong, J. Heath, J. Am. Chem. Soc. 128, 16323 (2006)

    Article  Google Scholar 

  15. L. de Smet, D. Ullien, M. Mescher, E. Sudhölter, in Nanowires – Implementations and Applications (InTech, 2011), Vol. 13, pp. 267–288

  16. A. Miranda-Durán, X. Cartoixà, M. Cruz Irisson, R. Rurali, Nano Lett. 10, 3590 (2010)

    Article  ADS  Google Scholar 

  17. A. Miranda, X. Cartoixà, E. Canadell, R. Rurali, Nanoscale Res. Lett. 7, 308 (2012)

    Article  ADS  Google Scholar 

  18. P. Bedrossian, R.D. Meade, K. Mortensen, D.M. Chen, J.A. Golovchenko, D. Vanderbilt, Phys. Rev. Lett. 63, 1257 (1989)

    Article  ADS  Google Scholar 

  19. M. Berthe, A. Urbieta, L. Perdigão, B. Grandidier, D. Deresmes, C. Delerue, D. Stiévenard, R. Rurali, N. Lorente, L. Magaud, P. Ordejón, Phys. Rev. Lett. 97, 206801 (2006)

    Article  ADS  Google Scholar 

  20. L. Boarino, F. Geobaldo, S. Borini, A.M. Rossi, P. Rivolo, M. Rocchia, E. Garrone, G. Amato, Phys. Rev. B 64, 205308 (2001)

    Article  ADS  Google Scholar 

  21. F. Geobaldo, B. Onida, P. Rivolo, S. Borini, L. Boarino, A. Rossi, G. Amato, E. Garrone, Chem. Comm. 21, 2196 (2001)

    Article  Google Scholar 

  22. E. Garrone, S. Borini, P. Rivolo, L. Boarino, F. Geobaldo, G. Amato, Phys. Stat. Sol. A 197, 103 (2003)

    Article  ADS  Google Scholar 

  23. F. Geobaldo, P. Rivolo, S. Borini, L. Boarino, G. Amato, M. Chiesa, E. Garrone, J. Phys. Chem. B 108, 18306 (2004)

    Article  Google Scholar 

  24. E. Garrone, F. Geobaldo, P. Rivolo, G. Amato, L. Boarino, M. Chiesa, E. Giamello, R. Gobetto, P. Ugliengo, A. Viale, Adv. Mater. 17, 528 (2005)

    Article  Google Scholar 

  25. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, R10441 (1996)

    Article  ADS  Google Scholar 

  26. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  27. E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. B 215, 809 (1999)

    Article  ADS  Google Scholar 

  28. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. F.B. van Duijneveldt, J.G.C.M. van Duijneveldt-van de Rijdt, J.H. van Lenthe, Chem. Rev. 94, 1873 (1994)

    Article  Google Scholar 

  32. M. Diarra, Y.-M. Niquet, C. Delerue, G. Allan, Phys. Rev. B 75, 045301 (2007)

    Article  ADS  Google Scholar 

  33. V.Y. Timoshenko, T. Dittrich, V. Lysenko, M.G. Lisachenko, F. Koch, Phys. Rev. B 64, 085314 (2001)

    Article  ADS  Google Scholar 

  34. G. Amato, A. Cultrera, L. Boarino, C. Lamberti, S. Bordiga, F. Mercuri, X. Cartoixà, R. Rurali, J. Appl. Phys. 114, 204302 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rurali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antidormi, A., Graziano, M., Piccinini, G. et al. First-principles calculations of SO2 sensing with Si nanowires. Eur. Phys. J. B 89, 275 (2016). https://doi.org/10.1140/epjb/e2016-70575-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70575-6

Keywords

Navigation