Distributions of positive correlations in sectoral value added growth in the global economic network*

Regular Article

Abstract

International trade has grown considerably during the process of globalization. Complex supply chains for the production of goods have resulted in an increasingly connected International Trade Network (ITN). Traditionally, direct trade relations between industries have been regarded as mediators of supply and demand spillovers. With increasing network connectivity the question arises if higher-order relations become more important in explaining a national sector’s susceptibility to supply and demand changes of its trading partner. In this study we address this question by investigating empirically to what extent the topological properties of the ITN provide information about positive correlations in the production of two industry sectors. We observe that although direct trade relations between industries serve as important indicators for correlations in the industries’ value added growth, opportunities of substitution for required production inputs as well as second-order trade relations cannot be neglected. Our results contribute to a better understanding of the relation between trade and economic productivity and can serve as a basis for the improvement of crisis spreading models that evaluate contagion threats in the case of a node’s failure in the ITN.

Keywords

Statistical and Nonlinear Physics 

Supplementary material

References

  1. 1.
    D. Hummels, J. Ishii, K.-M. Yi, Journal of International Economics 54, 75 (2001)CrossRefGoogle Scholar
  2. 2.
    R.C. Johnson, G. Noguera, American Economic Rev. 102, 407 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Grossman, E. Helpman, NBER Working Paper (2002)Google Scholar
  4. 4.
    I. Arribas, F. Pérez, E. Tortosa-Ausina, World Development 37, 127 (2009)CrossRefGoogle Scholar
  5. 5.
    K. De Backer, N. Yamano, OECD Science, Technology and Industry Working Papers 3, 23 (2007)Google Scholar
  6. 6.
    A.M. Falzoni, L. Tajoliss, Modern Economy 06, 358 (2015)CrossRefGoogle Scholar
  7. 7.
    J. Maluck, R.V. Donner, PLoS One 10, e0133310 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Bems, R.C. Johnson, K.-M. Yi, IMF Working Paper (2010)Google Scholar
  9. 9.
    W. Kohler, Review of International Economics 12, 793 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Feenstran, G. Hanson, in Handbook of international trade (Basil Blackwell, Oxford, 2003), pp. 146–185Google Scholar
  11. 11.
    R. Baldwin, A.J. Venables, Journal of International Economics 90, 245 (2013)CrossRefGoogle Scholar
  12. 12.
    M.E.J. Newman, SIAM Review 45, 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwanga, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    D.Y. Kenett, M. Raddant, L. Zatlavi, T. Lux, E. Ben-Jacob, Int. J. Mod. Phys. Conf. Ser. 16, 13 (2012)CrossRefGoogle Scholar
  15. 15.
    N. Golo, D.S. Bré, G. Kelman, L. Ussher, M. Lamieri, S. Solomon, J. Econ. Interact. Coord. 11, 247 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Serrano, M. Boguna, Phys. Rev. E 68, 015101(R) (2003)ADSCrossRefGoogle Scholar
  17. 17.
    D. Garlaschelli, M.I. Loffredo, Physica A 255, 138 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    K. Bhattacharya, G. Mukherjee, J. Sarämaki, K. Kaski, S.S. Manna, J. Stat. Mech. 2, P02002 (2008)Google Scholar
  19. 19.
    R. Kali, J. Reyes, J. Int. Bus. Stud. 38, 595 (2007)CrossRefGoogle Scholar
  20. 20.
    T. Deguchi, K. Takahashi, H. Takayasu, M. Takayasu, PloS One 9, e100338 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M.G.A. Contreras, G. Fagiolo, LEM Papers Series (2014)Google Scholar
  22. 22.
    A. Garas, P. Argyrakis, C. Rozenblat, M. Tomassini, S. Havlin, New J. Phys. 12, 113043 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    R. Bierkandt, L. Wenz, S. Willner, A. Levermann, Environ. Sys. Decis. 43, 507 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Murray, M. Lenzen, The Sustainability Practitioner’s Guide to Input-Output Analysis (Champaign: Common Ground Publishing LLC, 2010)Google Scholar
  25. 25.
    M. Lenzen, K. Kanemoto, D. Moran, A. Geschke, Environ. Sci. Technol. 46, 8364 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Lenzen, D. Moran, K. Kanemoto, A. Geschke, Econ. Sys. Res. 25, 20 (2013)CrossRefGoogle Scholar
  27. 27.
    The World Bank, Inflation, gdp deflator (annual %), World Bank national accounts data, and OECD National Accounts data files (Accessed March 17th, 2016), http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG
  28. 28.
    The World Bank, Official exchange rate (lcu per us$, period average), International Monetary Fund, International Financial Statistics (Accessed March 17th, 2016), http://data.worldbank.org/indicator/PA.NUS.FCRF
  29. 29.
    H. Görg, A. Hanley, The North American Journal of Economics and Finance 16, 255 (2005)CrossRefGoogle Scholar
  30. 30.
    A.J.-Y. Kam, Asian-Pacific Economic Literature 27, 127 (2013)CrossRefGoogle Scholar
  31. 31.
    L.A.N. Amaral, P. Gopikrishnan, V. Plerou, H.E. Stanley, Physica A 299, 127 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    R. Babbar, C. Metzig, I. Partalas, E. Gaussier, M.R. Amini, SIGKDD Explor. Newsl. 16, 47 (2014)CrossRefGoogle Scholar
  33. 33.
    M.F. Montes, V.V. Popov, The Asian crisis turns global (ISEAS, Singapore, 2000)Google Scholar
  34. 34.
    A. Shama, Business Horizons 43, 73 (2000)CrossRefGoogle Scholar
  35. 35.
    The National Bureau of Economic Research, p. http://www.nber.org/cycles/recessions.html (Accessed March 17th, 2016)
  36. 36.
    J.J. Morris, A. Pervaiz, The Quarterly Review of Economics and Finance 52, 243 (2012)CrossRefGoogle Scholar
  37. 37.
    G.A. Horn, U. Fritsche, Economic Bulletin 39, 119 (2002)CrossRefGoogle Scholar
  38. 38.
    M. Palus, Contemporary Physics 48, 307 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    D.G. Bonnett, T.A. Wright, Psychometrika 65, 23 (2000)CrossRefGoogle Scholar
  40. 40.
    S. Hempel, A. Koseska, Z. Nikoloski, Eur. Phys. J. B 86, 250 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    C. Spearman, Am. J. Psychol. 15, 72 (1904)CrossRefGoogle Scholar
  42. 42.
    T. Schreiber, A. Schmitz, Physica D 142, 346 (2000)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    L. Wenz, A. Levermann, Science Advances 2, e1501026 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    M.E.J. Newman, M. Girvan, Phys. Rev. E. 69, 026113 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    S. Fortunato, Phys. Rep. 486, 75 (2010)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    V.D. Blondel, J.L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech. 2008, P10008 (2008)CrossRefGoogle Scholar
  47. 47.
    E.A. Leicht, M.E.J. Newman, Phys. Rev. Lett. 100, 118703 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    A.N. Kolmogorov, Giorn. Ist. Ital. Attuari 4, 83 (1933)Google Scholar
  49. 49.
    J. Lin, IEEE Trans. Information Theory 37, 145 (1991)MathSciNetCrossRefGoogle Scholar
  50. 50.
    J.A. Schumpeter, Capitalism, socialism and democracy (Routledge, 2010)Google Scholar
  51. 51.
    G.M. Angeletos, J. La’O, Econometrica 81, 739 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Humboldt University of Berlin, Department of PhysicsBerlinGermany

Personalised recommendations