Skip to main content
Log in

The effects of the composition, temperature and geometry on the hysteretic properties of the Ising-type barcode nanowire

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present study, a theoretical approach to investigate the magnetic hysteresis properties in barcode nanowire are used and applied to study Ising system on hexagonal structure. The hysteresis behaviors of Ising-type barcode nanowire (IBN) are studied within the effective-field theory with correlations. The effects of the composition (p), temperature (T) and geometry (interlayer length (d), shell length (s), and wire length (r)) on the hysteresis behaviors are examined in detail. The phase diagrams are presented in the five different planes, namely (p, T), (d, r), (d, T), (r, T) and (s, T) as function of coercive field (H C ) and remanence (M r ), and investigated soft/hard the magnetic characteristics of the system. We find that the hysteresis loops areas decrease case as the temperature, wire and lengths increase. Moreover, when p increases the hysteresis loop areas increase. Moreover, H C exhibits an increase in around d = 1 value, then H C does not change with the increasing d values. Theoretical results have qualitatively compatible with some experimental works of multilayer nanowire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Bangar, C.M. Hangarter, B. Yoo, Y. Rheem, W. Chen, A. Mulchandani, N.V. Myung, Electroanalysis 21, 61 (2009)

    Article  Google Scholar 

  2. D. Pullini, D. Busquets-Mataix, ACS Appl. Mater. Interfaces 3, 759 (2011)

    Article  Google Scholar 

  3. B. Cox, D. Davis, N. Crews, Sensors Actuators A 203, 335 (2013)

    Article  Google Scholar 

  4. K. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484 (1994)

    Article  ADS  Google Scholar 

  5. W. Maijenburg, E.J.B. Rodijk, M.G. Maas, M. Enculescu, D.H.A. Blank, J.E. ten Elshof, Small 7, 2709 (2011)

    Article  Google Scholar 

  6. X. Wang, C.S. Ozkan, Nano Lett. 8, 398 (2008)

    Article  ADS  Google Scholar 

  7. B. Ozkale et al., Appl. Mater. Interfaces 7, 7389 (2015)

    Article  Google Scholar 

  8. A.I. Gapin, X.-R. Ye, L.-I. Chen, D. Hong, J. Sungho, IEEE Trans. Magn. 43, 2151 (2007)

    Article  ADS  Google Scholar 

  9. S. Allende, N.M. Vargas, D. Altbir, V. Vega, D. Görlitz, K. Nielsch, Appl. Phys. Lett. 101, 122412 (2012)

    Article  ADS  Google Scholar 

  10. E. Cisternas, E.E. Vogel, J. Magn. Magn. Mater. 388, 35 (2015)

    Article  ADS  Google Scholar 

  11. T. Kaneyoshi, J. Magn. Magn. Mater 322, 3410 (2010)

    Article  ADS  Google Scholar 

  12. M. Keskin, N. Şarlı, B. Deviren, Solid State Commun. 151, 2483 (2011)

    Article  Google Scholar 

  13. M. Boughrara, M. Kerouad, A. Zaim, J. Magn. Magn. Mater. 360, 222 (2014)

    Article  ADS  Google Scholar 

  14. E. Kantar, Y. Kocakaplan, J. Magn. Magn. Mater. 393, 574 (2015)

    Article  ADS  Google Scholar 

  15. E. Kantar, M. Ertas, J. Supercond. Nov. Magn. 28, 2529 (2015)

    Article  Google Scholar 

  16. E. Kantar, M. Ertas, Superlattice Microst. 75, 831 (2014)

    Article  ADS  Google Scholar 

  17. M. Ertas, E. Kantar, Phase Transit. 88, 567 (2015)

    Article  Google Scholar 

  18. N. Zaim, A. Zaim, M. Kerouad, J. Alloys Compd. 663, 516 (2016)

    Article  Google Scholar 

  19. H. Magoussi, A. Zaim, M. Kerouad, Solid State Commun. 200, 32 (2014)

    Article  ADS  Google Scholar 

  20. A. Feraoun, A. Zaim, M. Kerouad, Physica B 445, 74 (2014)

    Article  ADS  Google Scholar 

  21. L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484 (1994)

    Article  ADS  Google Scholar 

  22. K. Liu, K. Nagodawithana, P.C. Searson, C.L. Chien, Phys. Rev. B 51, 7381 (1995)

    Article  ADS  Google Scholar 

  23. R. Sharif, X.Q. Zhang, M.K. Rahman, S. Shamaila, J.Y. Chen, X.F. Han, Y.K. Kim, Ieee T Magn. 45, 4033 (2009)

    Article  ADS  Google Scholar 

  24. J.U. Cho, J.H. Min, S.P. Ko, J.Y. Soh, Y.K. Kim, J.H. Wu, S.H. Choi, J. Appl. Phys. 99, 08C909 (2006)

    Article  Google Scholar 

  25. S. Dubois, E. Chassaing, J.L. Duvail, L. Piraux, M.G. Waals, J. Chim. Phys. PCB 96, 1316 (1999)

    Article  Google Scholar 

  26. K.Y. Kok, C.M. Hangarter, B. Goldsmith, I.K. Ng, N.B. Saidin, N.V. Myung, J. Magn. Magn. Mater. 322, 3876 (2010)

    Article  ADS  Google Scholar 

  27. X.T. Tang, G.C. Wang, M. Shima, J. Appl. Phys. 99, 033906 (2006)

    Article  ADS  Google Scholar 

  28. X.T. Tang, G.C. Wang, M. Shima, Phys. Rev. B 75, 134404 (2007)

    Article  ADS  Google Scholar 

  29. P. Shakya, B. Cox, D. Davis, J. Magn. Magn. Mater. 324, 453 (2012)

    Article  ADS  Google Scholar 

  30. J.J. Park, M. Reddy, C. Mudivarthi, P.R. Downey, B.J.H. Stadler, A.B. Flatau, J. Appl. Phys. 107, 09A954 (2010)

    Google Scholar 

  31. Y. Peng, T. Cullis, G. Mobus, X. Xu, B. Inkson, Nanotechnology 18, 485704 (2007)

    Article  Google Scholar 

  32. H.P. Liang, Y.G. Guo, J.S. Hu, C.F. Zhu, L.J. Wan, C.L. Bai, Inorg Chem. 44, 3013 (2005)

    Article  Google Scholar 

  33. P. Panigrahi, R. Pati, Phys. Rev. B 76, 024431 (2007)

    Article  ADS  Google Scholar 

  34. M. Elawayeb, Y. Peng, K.J. Briston, B.J. Inkson, J. Appl. Phys. 111, 034306 (2012)

    Article  ADS  Google Scholar 

  35. S. Valizadeh, L. Hultman, J.M. George, P. Leisner, Adv. Funct. Mater. 12, 766 (2002)

    Article  Google Scholar 

  36. K. Qi, X.H. Li, H. Zhang, L. Wang, D.S. Xue, H.L. Zhang, B.F. Zhou, N.J. Mellors, Y. Peng, Nanotechnology 23, 505707 (2012)

    Article  Google Scholar 

  37. F. Nasirpouri, Ieee T Magn. 47, 2015 (2011)

    Article  ADS  Google Scholar 

  38. E. Kantar, J. Supercond. Nov. Magn. (2016), doi:10.1007/s10948-016-3732-7

  39. R. Honmura, T. Kaneyoshi, J. Phys. C 12, 3979 (1979)

    Article  ADS  Google Scholar 

  40. T. Kaneyoshi, I.P. Fittipaldi, R. Honmura, T. Manabe, Phys. Rev. B 24, 481 (1981)

    Article  ADS  Google Scholar 

  41. A.K. Singh, K. Mandal, J. Nanosci. Nanotechnol. 14, 5036 (2014)

    Article  Google Scholar 

  42. E.M. Palmero, C. Bran, R.P. del Real, C. Magen, M. Vazquez, J. Appl. Phys. 116, 033908 (2014)

    Article  ADS  Google Scholar 

  43. S. Ishrat, K. Maaz, K.J. Lee, M.H. Jung, G.H. Kim, J. Alloy Compd. 541, 483 (2012)

    Article  Google Scholar 

  44. R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Physica B 472, 19 (2015)

    Article  ADS  Google Scholar 

  45. R. Masrour, L. Bahmad, M. Hamedoun, A. Benyoussef, E.K. Hlil, Phys. Lett. A 378, 276 (2014)

    Article  ADS  Google Scholar 

  46. H. Magoussi, A. Zaim, M. Kerouad, Superlattices and Microstructures 89, 188 (2016)

    Article  ADS  Google Scholar 

  47. Y. Kocakaplan, E. Kantar, Eur. Phys. J. B 86, 420 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Sirisangsawang, W. Rattanasakulthong, S. Pinitsoontorn, Int. J. Phys. Sci. 7, 6044 (2012)

    Google Scholar 

  49. X. Lin, G. Ji, T. Gao, J. Nie, Y. Du, Solid State Commun. 152, 1585 (2012)

    Article  ADS  Google Scholar 

  50. C. Bran, E.M. Palmero, R.P. del Real, M. Vazquez, Physica Status Solidi A 211, 1076 (2014)

    Article  Google Scholar 

  51. H. Yang, M. Zeng, R. Yu, Mater. Res. Bull. 57, 249 (2014)

    Article  Google Scholar 

  52. S. Bouhou, I. Essaoudi, A. Ainane F. Dujardin, R. Ahuja, M. Saber, J. Supercond. Nov. Magn. 26, 201 (2013)

    Article  Google Scholar 

  53. H. Kuru, H. Kockar, M. Alper, J. Supercond. Nov. Magn. 26, 779 (2013)

    Article  Google Scholar 

  54. L.V. Thiem, L.T. Tu, M.H. Phan, Sensors-Basel 15, 5687 (2015)

    Article  Google Scholar 

  55. M. Vazquez, L.G. Vivas, Physica Status Solidi B 248, 2368 (2011)

    Article  ADS  Google Scholar 

  56. M.A. Kashi, A. Ramazani, A.S. Esmaeily, Ieee T Magn. 49, 1167 (2013)

    Article  ADS  Google Scholar 

  57. S. Aravamudhan, J. Singleton, P.A. Goddard, S. Bhansali, J. Phys. D 42, 115008 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersin Kantar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantar, E. The effects of the composition, temperature and geometry on the hysteretic properties of the Ising-type barcode nanowire. Eur. Phys. J. B 89, 281 (2016). https://doi.org/10.1140/epjb/e2016-70484-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70484-8

Keywords

Navigation