Skip to main content
Log in

Electronic structures of doped BaFe2As2 materials: virtual crystal approximation versus super-cell approach

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using virtual crystal approximation and super-cell methods for doping, a detailed comparative study of electronic structures of various doped BaFe2As2 materials by first principles simulations is presented. Electronic structures remain unaltered for both the methods in case of passive site doping but in case of active site doping, the electronic structure for virtual crystal approximation method differ from that of the super-cell method specially in the higher doping concentrations. For example, both of these methods give rise to a similar density of states and band structures in case of hole doping (replacing K in place of Ba) and isovalent P doping on As site. But in case of electron doped (Co in place of Fe) systems with higher doping concentration, electronic structures calculated using virtual crystal approximation approach deviates from that of the super-cell method. On the other hand, in case of low isovalent Ru doping at the Fe site implemented by virtual crystal approximation, one acquires an extra shift in the chemical potential in comparison to that for the super-cell method. This shift may be utilized to predict the correct electronic structure as well as the calculated Fermi surfaces within virtual crystal approximation. But for higher Ru (that has different electronic configuration than Fe) doping concentration, simple shifting of chemical potential fails, the calculated electronic structure via virtual crystal approximation approach is very different from that by the super-cell formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Article  Google Scholar 

  2. C. de la Cruz, Q. Huang, J.W. Lynn, Jiying Li, W. Ratcliff II, J.L. Zarestky, H.A. Mook, G.F. Chen, J.L. Luo, N.L. Wang, Pengcheng Dai, Nature 453, 899 (2008)

    Article  ADS  Google Scholar 

  3. J. Dong, H.J. Zhang, G. Xu, Z. Li, G. Li, W.Z. Hu, D. Wu, G.F. Chen, X. Dai, J.L. Luo, Europhys. Lett. 83, 27006 (2008)

    Article  ADS  Google Scholar 

  4. I.I. Mazin, Phys. Rev. B 84, 024529 (2010)

    Article  ADS  Google Scholar 

  5. P.J. Hirschfeld, M.M. Korshunov, I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011)

    Article  ADS  Google Scholar 

  6. I.I. Mazin, Nat. Mater. 14, 755 (2015)

    Article  ADS  Google Scholar 

  7. M.D. Lumsden, A.D. Christianson, J. Phys.: Condens. Matter 22, 203203 (2010)

    ADS  Google Scholar 

  8. P. Marsik, K.W. Kim, A. Dubroka, M. Rössle, V.K. Malik, L. Schulz, C.N. Wang, Ch. Niedermayer, A.J. Drew, M. Willis, T. Wolf, C. Bernhard, Phys. Rev. Lett. 105, 057001 (2011)

    Article  ADS  Google Scholar 

  9. Smritijit Sen, Haranath Ghosh, J. Alloys Compd. 618, 102 (2015)

    Article  Google Scholar 

  10. Pengcheng Dai, Jiangping Hu, Elbio Dagotto, Nat. Phys. 8, 709 (2012)

    Article  Google Scholar 

  11. T. Shimojima, F. Sakaguchi, K. Ishizaka, Y. Ishida, T. Kiss, M. Okawa, T. Togashi, C.-T. Chen, S. Watanabe, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, K. Ohgushi, S. Kasahara, T. Terashima, T. Shibauchi, Y. Matsuda, A. Chainani, S. Shin, Science 332, 564 (2011)

    Article  ADS  Google Scholar 

  12. H. Kontani, S. Onari, Phys. Rev. Lett. 104, 157001 (2010)

    Article  ADS  Google Scholar 

  13. H. Ghosh, H. Purwar, Europhys. Lett. 98, 57012 (2012)

    Article  ADS  Google Scholar 

  14. S.-H. Baek, D.V. Efremov, J.M. Ok, J.S. Kim, J. van den Brink, B. Büchner, Nat. Mater. 14, 210 (2015)

    Article  ADS  Google Scholar 

  15. R.M. Fernandes, A.V. Chubukov, J. Schmalian, Nat. Phys. 10, 97 (2014)

    Article  Google Scholar 

  16. I.I. Mazin, D.J. Singh, M.D. Johannes, M.H. Du, Phys. Rev. Lett. 101, 057003 (2008)

    Article  ADS  Google Scholar 

  17. A.V. Chubukov, Annul. Rev. Cond. Mat. Phys. 3, 13.1 (2012)

    Google Scholar 

  18. Seiichiro Onari, Hiroshi Kontani, Phys. Rev. Lett. 109, 137001 (2012)

    Article  ADS  Google Scholar 

  19. G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011)

    Article  ADS  Google Scholar 

  20. Xinxin Zhang, Yanchao Wang, Yanming Ma, Phys. Chem. Chem. Phys. 14, 15029 (2012)

    Article  Google Scholar 

  21. I. Zeljkovic, J.E. Hoffman, Phys. Chem. Chem. Phys. 15, 13462 (2013)

    Article  Google Scholar 

  22. L. Wang et al., Phys. Rev. Lett. 110, 037001 (2013)

    Article  ADS  Google Scholar 

  23. J.-F. Ge, Z.-L. Liu, C. Liu, C.-L. Gao, D. Qian, Q.-K. Xue, Y. Liu, J.-F. Jia, Nat. Mater. 14, 285 (2015)

    Article  ADS  Google Scholar 

  24. Y. Mizuguhci, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou, Y. Takano, Super. Sci. Tech. 23, 054013 (2010)

    Article  ADS  Google Scholar 

  25. A.K. Ganguli, J. Prakash, G.S. Thakur, Chem. Soc. Rev. 42, 569 (2013)

    Article  Google Scholar 

  26. C.H. Lee, K. Kihou, A. Iyo, H. Kito, P.M. Shirage, H. Eisaki, Solid State Commun. 152, 644 (2012)

    Article  ADS  Google Scholar 

  27. Jun Zhao, Q. Huang, Clarina de la Cruz, Shiliang Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, Pengcheng Dai, Nat. Mater. 12, 953 (2008)

    Article  ADS  Google Scholar 

  28. P.M. Shirage, K. Miyazawa, M. Ishikado, K. Kihou, C.H. Lee, N. Takeshita, H. Matsuhata, R. Kumai, Y. Tomioka, T. Ito, H. Kito, H. Eisaki, S. Shamoto, A. Iyo, Physica C 469, 355 (2013)

    Article  ADS  Google Scholar 

  29. S. Sharma, A. Bharathi, K. Vinod, C.S. Sundar, V. Srihari, S. Sen, H. Ghosh, A.K. Sinha, S.K. Deb, Acta. Cryst. B 71, 61 (2015)

    Article  Google Scholar 

  30. S. Sen, H. Ghosh, A.K. Sinha, A. Bharathi, Supercond. Sci. Technol. 27, 122003 (2014)

    Article  ADS  Google Scholar 

  31. Deepa Kasinathan, Alim Ormeci, Katrin Koch, Ulrich Burkhardt, Walter Schnelle, Andreas Leithe-Jasper, Helge Rosner, New J. Phys. 11, 025023 (2009)

    Article  ADS  Google Scholar 

  32. A. Mani, N. Ghosh, S. Paulraj, A. Bharathi, C.S. Sundar, Europhys. Lett. 87, 17004 (2009)

    Article  ADS  Google Scholar 

  33. Tuson Park, Eunsung Park, Hanoh Lee, T. Klimczuk, E.D. Bauer, F. Ronning, J.D. Thompson, J. Phys.: Condens. Matter 20, 322204 (2008)

    Google Scholar 

  34. P.L. Alireza, Y.T. Chris Ko, J. Gillett, C.M. Petrone, J.M. Cole, G.G. Lonzarich, S.E. Sebastian, J. Phys.: Condens. Matter 21, 012208 (2009)

    ADS  Google Scholar 

  35. A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008)

    Article  ADS  Google Scholar 

  36. A. Leithe-Jasper, W. Schnelle, C. Geibel, H. Rosner, Phys. Rev. Lett. 101, 207004 (2008)

    Article  ADS  Google Scholar 

  37. L.J. Li, Y.K. Luo, Q.B. Wang, H. Chen, Z. Ren, Q. Tao, Y.K. Li, X. Lin, M. He, Z.W. Zhu, G.H. Cao, Z.A. Xu, New J. Phys. 11, 025008 (2009)

    Article  ADS  Google Scholar 

  38. S. Sharma, A. Bharathi, S. Chandra, R. Reddy, S. Paulraj, A.T. Satya, V.S. Sastry, A. Gupta, C.S. Sundar, Phys. Rev. B 81, 174512 (2010)

    Article  ADS  Google Scholar 

  39. F. Han, X. Zhu, P. Cheng, G. Mu, Y. Jia, L. Fang, Y. Wang, H. Luo, B. Zeng, B. Shen, L. Shan, C. Ren, H.-H. Wen, Phys. Rev. B 80, 024506 (2009)

    Article  ADS  Google Scholar 

  40. G. Wang, L. Zheng, M. Zhang, Z. Yang, Phys. Rev. B 81, 014521 (2010)

    Article  ADS  Google Scholar 

  41. D.J. Singh, Phys. Rev. B 78, 094511 (2008)

    Article  ADS  Google Scholar 

  42. A. Sanna et al., Phys. Rev. B 83, 054502 (2011)

    Article  ADS  Google Scholar 

  43. L. Zhang, D.J. Singh, Phys. Rev. B 79, 174530 (2009)

    Article  ADS  Google Scholar 

  44. S. Avci, O. Chmaissem, D.Y. Chung, S. Rosenkranz, E.A. Goremychkin, J.P. Castellan, I.S. Todorov, J.A. Schlueter, H. Claus, A. Daoud-Aladine, D.D. Khalyavin, M.G. Kanatzidis, R. Osborn, Phys. Rev. B 85, 184507 (2012)

    Article  ADS  Google Scholar 

  45. A. Lucarelli, A. Dusza, F. Pfuner, P. Lerch, J.G. Analytis, J.-H. Chu, I.R. Fisher, L. Degiorgi, New J. Phys. 12, 073036 (2010)

    Article  ADS  Google Scholar 

  46. X.F. Wang, T. Wu, G. Wu, R.H. Liu, H. Chen, Y.L. Xie, X.H. Chen, New J. Phys. 11, 045003 (2009)

    Article  ADS  Google Scholar 

  47. N. Ni, A. Thaler, A. Kracher, J.Q. Yan, S.L. Bud’ko, P.C. Canfield, Phys. Rev. B 80, 024511 (2009)

    Article  ADS  Google Scholar 

  48. A. Thaler, N. Ni, A. Kracher, J.Q. Yan, S.L. Budko, P.C. Canfield, Phys. Rev. B 82, 014534 (2010)

    Article  ADS  Google Scholar 

  49. S. Nandi, M.G. Kim, A. Kreyssig, R.M. Fernandes, D.K. Pratt, A. Thaler, N. Ni, S.L. Bud’ko, P.C. Canfield, J. Schmalian, R.J. McQueeney, A.I. Goldman, Phys. Rev. Lett. 104, 057006 (2010)

    Article  ADS  Google Scholar 

  50. S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, T. Terashima, Y. Matsuda, Phys. Rev. B 81, 184519 (2010)

    Article  ADS  Google Scholar 

  51. G. Derondeau et al., Phys. Rev. B 90, 184509 (2014)

    Article  ADS  Google Scholar 

  52. J.J. Pulikkotil, U. Schwingenschloegl, Phys. Rev. Lett. 104, 177006 (2010)

    Article  ADS  Google Scholar 

  53. S.N. Khan et al., Phys. Rev. B 89, 205121 (2014)

    Article  ADS  Google Scholar 

  54. U. Mizutani, in Introduction to the Theory of Metals (Cambridge University Press, 2001), p. 211

  55. J. Íñiguez, D. Vanderbilt, L. Bellaiche, Phys. Rev. B 67, 224107 (2003)

    Article  ADS  Google Scholar 

  56. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, Zeitschrift fuer Kristallographie 220, 567 (2005)

    ADS  Google Scholar 

  57. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  58. J.P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche, H. Eschrig (Akademie Verlag, Berlin, 1991), p. 11

  59. Z.P. Yin, S. Lebégue, M.J. Han, B.P. Neal, S.Y. Savrasov, W.E. Pickett, Phys. Rev. Lett. 101, 047001 (2008)

    Article  ADS  Google Scholar 

  60. I. Mazin, Phys. Rev. B 78, 085104 (2008)

    Article  ADS  Google Scholar 

  61. Smritijit Sen, Haranath Ghosh, Phys. Lett. A 379, 843 (2015)

    Article  Google Scholar 

  62. M. Rotter, High-temperature superconductivity in doped BaFe2As2, Ph.D. thesis, Ludwig-Maximilians-Universität München, 2010, p. 61

  63. L. Nordheim, Ann. Phys. 9, 607 (1931)

    Article  Google Scholar 

  64. N. Marzari, S. de Gironcoli, S. Baroni, Phys. Rev. Lett. 72, 4001 (1994)

    Article  ADS  Google Scholar 

  65. A.M. Saitta, S. de Gironcoli, S. Baroni, Phys. Rev. Lett. 80, 4939 (1998)

    Article  ADS  Google Scholar 

  66. G.K. Wannier, Rev. Mod. Phys. 64, 1045 (1992)

    Article  Google Scholar 

  67. N.J. Ramer, A.M. Rappe, J. Phys. Chem. Solids 61, 315 (2000)

    Article  ADS  Google Scholar 

  68. N.J. Ramer, A.M. Rappe, Phys. Rev. B 62, 743(R) (2000)

    Article  ADS  Google Scholar 

  69. L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61, 7877 (2000)

    Article  ADS  Google Scholar 

  70. G.T. Wang, Y. Qian, G. Xu, X. Dai, Z. Fang, Phys. Rev. Lett. 104, 047002 (2010)

    Article  ADS  Google Scholar 

  71. M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, R. Pöttgen, Phys. Rev. B 78, 020503(R) (2008)

    Article  ADS  Google Scholar 

  72. S. Graser, A.F. Kemper, T.A. Maier, H.-P. Cheng, P.J. Hirschfeld, D.J. Scalapino, Phys. Rev. B 81, 214503 (2010)

    Article  ADS  Google Scholar 

  73. M. Daghofer, A. Nicholson, A. Moreo, E. Dagotto, Phys. Rev. B 81, 014511 (2010)

    Article  ADS  Google Scholar 

  74. Y. Ran, F. Wang, H. Zhai, A. Vishwanath, D.-H. Lee, Phys. Rev. B 79, 014505 (2009)

    Article  ADS  Google Scholar 

  75. H. Ding, P. Richard, K. Nakayama, T. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, Europhys Lett. 83, 47001 (2008)

    Article  ADS  Google Scholar 

  76. N. Xu, T. Qian, P. Richard, Y.-B. Shi, X.-P. Wang, P. Zhang, Y.-B. Huang, Y.-M. Xu, H. Miao, G. Xu, G.-F. Xuan, W.-H. Jiao, Z.-A. Xu, G.-H. Cao, H. Ding, Phys. Rev. B 86, 064505 (2012)

    Article  ADS  Google Scholar 

  77. R.S. Dhaka, C. Liu, R.M. Fernandes, R. Jiang, C.P. Strehlow, T. Kondo, A. Thaler, J. Schmalian, S.L. Budko, P.C. Canfield, A. Kaminski, Phys. Rev. Lett. 107, 267002 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smritijit Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, S., Ghosh, H. Electronic structures of doped BaFe2As2 materials: virtual crystal approximation versus super-cell approach. Eur. Phys. J. B 89, 277 (2016). https://doi.org/10.1140/epjb/e2016-70446-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70446-2

Keywords

Navigation