Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal B
  3. Article
Field-theoretical description of the formation of a crack tip process zone
Download PDF
Download PDF
  • Regular Article
  • Open Access
  • Published: 05 December 2016

Field-theoretical description of the formation of a crack tip process zone

  • Alexei Boulbitch1 &
  • Alexander L. Korzhenevskii2 

The European Physical Journal B volume 89, Article number: 261 (2016) Cite this article

  • 650 Accesses

  • 8 Citations

  • Metrics details

Abstract

The crack tip process zone is regarded as a region where the solid physical properties are altered due to high stress. They are controlled by the solid degrees of freedom existing within the zone and vanishing outside, and can be divided into two classes: (1) zones always existing at the tip and (2) those emerging as soon as certain conditions are met. We focus on the zones of the second kind and argue that they can be described analogously to phase transitions taking place locally. We report both a numerical and an analytical solution for the process zone. We find that the zone can only exist within a limited domain of the dynamic phase diagram, at one side of the phase transition line. We describe this domain and establish its dependence on the crack velocity. We show the existence of a critical crack velocity above which the zone cannot exist.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Fineberg, M. Marder, Phys. Rep. 313, 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Gao, J. Mech. Phys. Solids 44, 1453 (1996)

    Article  ADS  Google Scholar 

  3. M.J. Buehler, F.F. Abraham, H. Gao, Nature 426, 141 (2003)

    Article  ADS  Google Scholar 

  4. M.J. Buechler, H. Gao, Nature 439, 307 (2006)

    Article  ADS  Google Scholar 

  5. A.Y. Grosberg, A.R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994)

  6. E. Bouchbinder, A. Livne, E. Bouchbinder, J. Fineberg, Phys. Rev. Lett. 101, 264302 (2008)

    Article  ADS  Google Scholar 

  7. A. Livne, E. Bouchbinder, J. Fineberg, Phys. Rev. Lett. 101, 264301 (2008)

    Article  ADS  Google Scholar 

  8. L.I. Slepyan, Sov. Phys. Dokl. 26, 538 (1981)

    ADS  Google Scholar 

  9. M. Marder, S. Gross, J. Mech. Phys. Solids 43, 1 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. M.J. Fineberg, E. Bouchbinder, Int. J. Fract. 196, 33 (2015)

    Article  Google Scholar 

  11. D.A. Kessler, H. Levine, Phys. Rev. E 59, 5154 (1999)

    Article  ADS  Google Scholar 

  12. D.A. Kessler, H. Levine, Phys. Rev. E 63, 016118 (2000)

    Article  ADS  Google Scholar 

  13. I.S. Aranson, V.A. Kalatsky, V.M. Vinokur, Phys. Rev. Lett. 85, 118 (2000)

    Article  ADS  Google Scholar 

  14. A. Karma, D.A. Kessler, H. Levine, Phys. Rev. Lett. 87, 045501 (2001)

    Article  ADS  Google Scholar 

  15. L.O. Eastgate et al., Phys. Rev. E 65, 036117 (2002)

    Article  ADS  Google Scholar 

  16. A. Karma, A.E. Lobkovsky, Phys. Rev. Lett. 92, 245510 (2004)

    Article  ADS  Google Scholar 

  17. H. Henry, H. Levine, Phys. Rev. Lett. 93, 105504 (2004)

    Article  ADS  Google Scholar 

  18. A. Livne, O. Ben-David, J. Fineberg, Phys. Rev. Lett. 98, 124301 (2007)

    Article  ADS  Google Scholar 

  19. K. Ravi-Chandar, W. Knauss, Int. J. Fract. 26, 65 (1984)

    Article  Google Scholar 

  20. J. Fineberg, S.P. Gross, M. Marder, H.L. Swinney, Phys. Rev. Lett. 67, 457 (1991)

    Article  ADS  Google Scholar 

  21. A. Livne, G. Cohen, J. Fineberg, Phys. Rev. Lett. 94, 224301 (2005)

    Article  ADS  Google Scholar 

  22. B.T. Goldman, G. Cohen, J. Fineberg, Phys. Rev. Lett. 114, 054301 (2015)

    Article  ADS  Google Scholar 

  23. S.J. Pennycook, Ultramicroscopy 123, 28 (2012)

    Article  Google Scholar 

  24. S.J. Wang et al., Nat. Commun. 67 45 (2014)

    Google Scholar 

  25. S.W. Robertson et al., Acta Mater. 55, 6197 (2007)

    Article  Google Scholar 

  26. I. Roth et al., in ESOMAT 2009 – 8th European Symposium on Martensitic Transformations, edited by P. Sittner, V. Paidar, H. Seiner (EDP Sciences, Les Ulis, France, 2009)

  27. S. Daly et al., Acta Mater. 55, 6322 (2007)

    Article  Google Scholar 

  28. X. Tan et al., Acta Mater. 62, 114 (2014)

    Article  Google Scholar 

  29. F. Meschke et al., J. Am. Ceram. Soc. 83, 353 (2000)

    Article  Google Scholar 

  30. Y.H. Lu et al., Intermetallics 10, 823 (2002)

    Article  Google Scholar 

  31. E. Sgambittera, C. Maletta, F. Furgiuele, Sripta Mat. 101, 64 (2015)

    Article  Google Scholar 

  32. P.M. Kelly, L.R.F. Rose, Progr. Mater. Sci. 47, 463 (2002)

    Article  Google Scholar 

  33. S.D. Antolovich, D. Fahr, Eng. Fracture Mech. 4, 133 (1972)

    Article  Google Scholar 

  34. E. Hornbogen, Acta Metall. 26, 147 (1978)

    Article  Google Scholar 

  35. S.K. Hann, J.D. Gates, J. Mater. Sci. 32, 1249 (1997)

    Article  ADS  Google Scholar 

  36. E.C. Oliver et al., Appl. Phys. A 74, S1143 (2002)

    Article  ADS  Google Scholar 

  37. Z. Khan, M. Ahmed, J. Mater. Eng. Perform. 5, 201 (1996)

    Article  Google Scholar 

  38. M.K. Banerjee, N.R. Bandyopadhyay, J. Mazumder, in Processing and Fabrication of Advanced Materials VI, edited by K.A. Khor, T.S. Srivatsan, J.J. Moore (IOM Communications, London, 1998), Vols. 1, 2

  39. H. Oettel, U. Martin, Int. J. Mat. Res. 97, 1642 (2006)

    Article  Google Scholar 

  40. A.L. McKelvey, R.O. Ritchie, Phil. Mag. A 80, 1759 (2000)

    Article  ADS  Google Scholar 

  41. A.L. McKelvey, R.O. Ritchie, Metal. Mater. Trans. A 32, 731 (2001)

    Article  Google Scholar 

  42. H.F. Lopez, Mater. Lett. 51, 144 (2001)

    Article  Google Scholar 

  43. K. Kimura, T. Asaoka, K. Funami, in Proc. Int. Conf. on Thermomech. Proc. of Steels and Other Materials, edited by T. Chandra, T. Sakai (Minerals, Metals and Materials Soc., Warrendale, PA, 1997), Vols. I, II, p. 1675

  44. X. Wang, Z. Yue, in Fracture and Damage Mechanics V, edited by M.H. Aliabadi, Q. Li, L. Li, F.G. Buchholz, (2006), Vols. 324–325, p. 919, Parts 1 and 2

  45. G.M. Loughran, T.W. Shield, P.H. Leo, Int. J. Solids Struct. 40, 271 (2003)

    Article  Google Scholar 

  46. H. Qiu et al., Mater. Sci. Eng. A 579, 71 (2013)

    Article  Google Scholar 

  47. U.D. Hangen, G. Sauthoff, Intermetallics 7, 501 (1999)

    Article  Google Scholar 

  48. L.E. Tanner, D. Schryvers, S.M. Shapiro, Materials Sci. Eng. A 127, 205 (1990)

    Article  Google Scholar 

  49. A. Paradkar et al., Metall. Mater. Trans. 40A, 1604 (2009).

    Article  Google Scholar 

  50. M. Kerr et al., Scripta Mat. 62, 341 (2010)

    Article  Google Scholar 

  51. S.O. Kramarov, N.Y. Egorov, L.M. Katsnel’son, Sov. Phys. – Solid State 28, 1602 (1986)

    Google Scholar 

  52. A.A. Grekov et al., Ferroelectrics Lett. 8, 59 (1988)

    Article  Google Scholar 

  53. S. Lynch, R.M. McMeeking, Z. Suo, in Second International Conference on Intelligent Materials. ICIM’94, edited by C.A. Rogers, G.G. Wallace (Technomic Publishing Co., Lancaster, PA, USA, 1994), p. 856

  54. G.G. Siu, W.G. Zeng, J. Mater. Sci. 28, 5875 (1993)

    Article  ADS  Google Scholar 

  55. I. Birkby, R. Stevens, Key Eng. Mater. 122–124, 527 (1996)

    Article  Google Scholar 

  56. R.I. Todd, M.P.S. Saran, Transformation toughening, in Materials Processing Handbook, edited by J.R. Groza (CRC Press, Boca Raton, FL, USA, 2007), Vol. 20, pp. 1–20

  57. J. Karger-Kocsis, J. Varga, J. Appl. Polym. Sci. 62, 291 (1996)

    Article  Google Scholar 

  58. J. Karger-Kocsis, J. Varga, G.W. Ehrenstein, J. Appl. Polym. Sci. 64, 2057 (1997)

    Article  Google Scholar 

  59. H.-J. Sue, J.D. Earls, R.E. Hefner Jr., J. Mater. Sci. 32, 4039 (1997)

    Article  ADS  Google Scholar 

  60. H. Bai et al., J. Polym. Sci. B 47, 46 (2009)

    Article  Google Scholar 

  61. S.T. Kim et al., J. Mater. Sci. 33, 2421 (1998)

    Article  ADS  Google Scholar 

  62. G.A. Maier et al., Macromolecules 38, 6099 (2005)

    Article  ADS  Google Scholar 

  63. J.A. Horton, J.L. Wright, J.H. Schneibel, in Bulk Metallic Glasses, edited by W.L. Johnson, A. Inoue, C.T. Liu, (Oxford University Press, Oxford, 1999), Vol. 554, p. 185

  64. J.A. Donovan, Nippon Gomu Kyokaishi 75, 239 (2002)

    Article  Google Scholar 

  65. S. Trabelsi, P.-A. Albouy, J. Rault, Macromolecules 35, 10054 (2002)

    Article  ADS  Google Scholar 

  66. H.P. Zhang et al., Phys. Rev. Lett. 102, 245503 (2009)

    Article  ADS  Google Scholar 

  67. J.-B. Le Cam, E. Toussaint, Macromolecules 43, 4708 (2010)

    Article  ADS  Google Scholar 

  68. N. Saintier, G. Cailletaud, R. Piques, Mater. Sci. Eng. A 528, 1078 (2011)

    Article  Google Scholar 

  69. K. Tozawa et al., J. Electron Microscopy 48, 613 (1999)

    Article  Google Scholar 

  70. K.S. Watanabe et al., Radiation Effects and Defects in Solids 157, 101 (2002)

    Article  ADS  Google Scholar 

  71. M. Nagumo et al., Scripta Materialia 49, 837 (2003)

    Article  Google Scholar 

  72. M. Takeda et al., J. Electron Microsc. 48, 609 (1999)

    Article  Google Scholar 

  73. K. Youssef, P. Kulshreshtha, G. Rozgonyi, Photovoltaics for the 21st Century 25, 49 (2010)

    Google Scholar 

  74. P.K. Kulshreshtha, K.M. Youssef, G. Rozgonyi, Solar Energy Mater. Solar Cells 96, 166 (2012)

    Article  Google Scholar 

  75. N. Nishiyama et al., Sci. Rep. 4, 6558 (2014)

    Article  ADS  Google Scholar 

  76. K. Yoshida et al., Sci. Rep. 5, 10993 (2015)

    Article  ADS  Google Scholar 

  77. C. Wünsche, E. Radlein, G.H. Frischat, Glass Sci. Tech. – Glastechnische Berichte 72, 49 (1999)

    Google Scholar 

  78. C.J. Gilbert, V. Schroeder, R.O. Ritchie, Metall. Mater. Trans. A30, 1739 (1999)

    Article  Google Scholar 

  79. C.J. Gilbert, V. Schroeder, R.O. Ritchie, in Bulk Metallic Glasses, edited by W.L. Johnson, A. Inoue, C.T. Liu (Material Res. Soc., Warrendale PA, 1999), Vol. 554, p. 343

  80. I. Brough, R.N. Haward, G. Healey, A. Wood, Polymer 45, 3115 (2004)

    Article  Google Scholar 

  81. K. Nishimura, N. Miyazaki, Comp. Model. Eng. Sci. 2, 143 (2001)

    Google Scholar 

  82. Y.-F. Guo, D.-L. Zhao, Mater. Sci. Eng. A 448, 281 (2007)

    Article  Google Scholar 

  83. Y.-F. Guo, Y.-S. Wang, D.-L. Zhao, Acta Mater. 55, 401 (2007)

    Article  Google Scholar 

  84. A. Latapie, D. Farkas, Modell. Simul. Mater. Sci. Eng. 11, 745 (2003)

    Article  ADS  Google Scholar 

  85. R. Matsumoto et al., Comp. Model. Eng. Sci. 9, 75 (2005)

    Google Scholar 

  86. I.R. Vatne et al., Mater. Sci. Eng. A 560, 306 (2013)

    Article  Google Scholar 

  87. M.J. Buehler et al., Phys. Rev. Lett. 99, 165502 (2007)

    Article  ADS  Google Scholar 

  88. D. Sherman, M. Markovitz, O. Barkai, J. Mech. Phys. Solids 56, 376 (2008)

    Article  ADS  Google Scholar 

  89. F. Atrash, D. Sherman, J. Mech. Phys. Solids 60, 844 (2012)

    Article  ADS  Google Scholar 

  90. J.R. Kermode et al., Nature 455, 1224 (2008)

    Article  ADS  Google Scholar 

  91. J. Mei et al., Int. J. Solids Struct. 48, 3054 (2011)

    Article  Google Scholar 

  92. M. Ruda, D. Farkas, G. Bertolino, Comp. Mater. Sci. 49, 743 (2010)

    Article  Google Scholar 

  93. Y. Zhang et al., J. Nucl. Mater. 430, 96 (2012)

    Article  ADS  Google Scholar 

  94. A. Falvo et al., J. Mater. Eng. Perform. 18, 679 (2009)

    Article  Google Scholar 

  95. F.F. Abraham et al., Phys. Rev. Lett. 73, 272 (1994)

    Article  ADS  Google Scholar 

  96. S.J. Zhou et al., Phys. Rev. Lett. 76, 2318 (1996)

    Article  ADS  Google Scholar 

  97. P. Gumbsch, S.J. Zhou, B.L. Holian, Phys. Rev. B 55, 3445 (1997)

    Article  ADS  Google Scholar 

  98. T. Cramer, A. Wanner, P. Gumbsch, Phys. Rev. Lett. 85, 788 (2000)

    Article  ADS  Google Scholar 

  99. I. Birkby, R. Stevens, Key Eng. Mater. 122–124, 527 (1996)

    Article  Google Scholar 

  100. R.I. Todd, M.P.S. Saran, Transformation toughening, in Materials Processing Handbook, edited by J.R. Groza (CRC Press, Boca Raton, Fla., USA, 2007), Vol. 20, pp. 1–20

  101. B.L. Karihaloo, J.H. Andreasen, Mechanics of Transformation Toughening and Related Topics (Elsevier, Amsterdam, 1996)

  102. B. Budiansky, J.W. Hutchinson, J.C. Lambropoulos, Int. J. Solids Struct. 19, 843 (1983)

    Article  Google Scholar 

  103. A.G. Evans, R.M. Cannon, Acta Metall. 34, 761 (1986)

    Article  Google Scholar 

  104. L.R.F. Rose, Proc. R. Soc. A 412, 169 (1987)

    Article  ADS  Google Scholar 

  105. Q.P. Sun, K.C. Hwang, S.W. Yu, J. Mech. Phys. Solids 39, 507 (1991)

    Article  ADS  Google Scholar 

  106. T. Baxevanis, A.F. Parrinello, D.C. Lagoudas, Int. J. Plasticity 50, 158 (2013)

    Article  Google Scholar 

  107. A.L. Roitburd, Sov. Phys. – Usp. 17, 326 (1974)

    Article  ADS  Google Scholar 

  108. A.L. Roitburd, Sov. Phys. Solid State 26, 1229 (1984)

    Google Scholar 

  109. M.A. Grinfel’d, Lett. Appl. Eng. Sci. 19, 1031 (1981)

    Google Scholar 

  110. M.A. Grinfel’d, Izvestia, Earth Phys. 18, 28 (1982)

    Google Scholar 

  111. V.I. Levitas, I.B. Ozsoy, Int. J. Plasticity 25, 239 (2009)

    Article  Google Scholar 

  112. V.I. Levitas, I.B. Ozsoy, Int. J. Plasticity 25, 546 (2009)

    Article  Google Scholar 

  113. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1985)

  114. V.M. Nabutovskii, B.Ya. Shapiro, Sov. Phys. J. Exp. Theor. Phys. 48, 480 (1978)

    ADS  Google Scholar 

  115. A. Boulbitch, P. Toledano, Phys. Rev. Lett. 81, 838 (1998)

    Article  ADS  Google Scholar 

  116. A. Boulbitch, A.L. Korzhenevskii, Phys. Rev. Lett. 107, 085505 (2011)

    Article  ADS  Google Scholar 

  117. A. Boulbitch, A.L. Korzhenevskii, Phys. Rev. E 93, 063001 (2016)

    Article  ADS  Google Scholar 

  118. A. Boulbitch, A.L. Korzhenevskii, Europhys. Lett. 112, 16003 (2015)

    Article  Google Scholar 

  119. V.I. Levitas, Int. J. Plasticity 16, 805 (2000)

    Article  Google Scholar 

  120. V.I. Levitas, Int. J. Plasticity 16, 851 (2000)

    Article  Google Scholar 

  121. A.V. Idesman, V.I. Levitas, E. Stein, Int. J. Plasticity 16, 893 (2000)

    Article  Google Scholar 

  122. C. Bjerken, A.R. Massih, Condensed Matter, arXiv:1110.1292 (2011)

  123. E. Bouchbider et al., Rep. Prog. Phys. 77, 046501 (2014)

    Article  ADS  Google Scholar 

  124. A. Karma, D.A. Kessler, H. Levine, Phys. Rev. Lett. 87, 045501 (2001)

    Article  ADS  Google Scholar 

  125. V. Hakim, A. Karma, Phys. Rev. Lett. 95, 235501 (2005)

    Article  ADS  Google Scholar 

  126. R. Spatschek, M. Hartmann, E. Brener, H. Mueller-Krumbaar, Phys. Rev. Lett. 96, 015502 (2006)

    Article  ADS  Google Scholar 

  127. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  128. P. Toledano, V. Dmitriev, Reconstructive Phase Transitions, in Crystals and Quasicrystals (World Scientific, Singapore, 1996)

  129. V. Dmitriev et al., Phys. Rev. Lett. 60, 1958 (1988)

    Article  ADS  Google Scholar 

  130. V. Dmitriev et al., Phys. Rev. Lett. 62, 844 (1989)

    Article  ADS  Google Scholar 

  131. S.R. Shenoy et al., Phys. Rev. B 60, R12537 (1999)

    Article  ADS  Google Scholar 

  132. G.P. Cherepanov, Mechanics of Brittle Fracture (McGraw-Hill, New York, 1979)

  133. L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1986)

  134. M.M. Vainberg, V.A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations (Noordhoff, Leyden, 1974)

  135. Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL, 2014

  136. V.P. Sakhnenko, V.M. Talanov, Sov. Phys. Solid State 21, 1401 (1979)

    Google Scholar 

  137. V.P. Sakhnenko, V.M. Talanov, Sov. Phys. Solid State 22, 458 (1980)

    Google Scholar 

  138. G.R. Barsch, T. Ohba, D.M. Hatch, Mater. Sci. Eng. A 273–275, 161 (1999)

    Article  Google Scholar 

  139. O. Shchyglo, U. Salman, A. Finel, Acta Mater. 60, 6784 (2012)

    Article  Google Scholar 

  140. E.Y. Tonkov, in High Pressure Phase Transformations: A Handbook (Gordon and Breach, Amsterdam, 1992), Vols. 1–3

  141. M.A. Krivoglaz, Theory of X-ray and Thermal-Neutron Scattering by Real Crystals (Plenum Press, New York, 1969)

  142. P.R. Okamoto, N.Q. Lam, S. Ohnuki, J. Electron Microsc. 48, 481 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. IEE S.A. ZAE Weiergewan, 11, rue Edmond Reuter, 5326, Contern, Luxembourg

    Alexei Boulbitch

  2. Institute for Problems of Mechanical Engineering, RAS, Bol’shoi prosp. V. O. 61, 199178, St. Petersburg, Russia

    Alexander L. Korzhenevskii

Authors
  1. Alexei Boulbitch
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander L. Korzhenevskii
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexei Boulbitch.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulbitch, A., Korzhenevskii, A.L. Field-theoretical description of the formation of a crack tip process zone. Eur. Phys. J. B 89, 261 (2016). https://doi.org/10.1140/epjb/e2016-70426-6

Download citation

  • Received: 09 July 2016

  • Revised: 03 October 2016

  • Published: 05 December 2016

  • DOI: https://doi.org/10.1140/epjb/e2016-70426-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Solid State and Materials
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature