Competition between quantum spin tunneling and Kondo effect

Open Access
Regular Article


Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.


Solid State and Materials 


  1. 1.
    D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, Oxford, 2006)Google Scholar
  2. 2.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, Oxford, 2012)Google Scholar
  3. 3.
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1997)Google Scholar
  4. 4.
    C. Hirjibehedin, C-Y Lin. A.F. Otte, M. Ternes, C.P. Lutz, B.A. Jones, A.J. Heinrich, Science 317, 1199 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, R. Wiesendanger, Nature 467, 1084 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    N. Tsukahara, K.I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, M. Kawai, Phys. Rev. Lett. 102, 167203 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, L.P. Kouwenhoven, Nature 405, 764 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Parks, A.R. Champagne, T.A. Costi, W.W. Shum, A.N. Pasupathy, E. Neuscamman, S. Flores-Torres, P.S. Cornaglia, A.A. Aligia, C.A. Balseiro, G.K.-L. Chan, H.D. Abruña, D.C. Ralph, Science 328, 1370 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    N. Tsukahara, S. Shiraki, S. Itou, N. Ohta, N. Takagi, M. Kawai, Phys. Rev. Lett. 106, 187201 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Mugarza, R. Robles, C. Krull, R. Korytar, N. Lorente, P. Gambardella, Phys. Rev. B 85, 155437 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Jiang, Y.N. Zhang, J.X. Cao, R.Q. Wu, W. Ho, Science 333, 324 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science 280, 567 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    A. Garg, Europhys. Lett. 22, 205 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    R. Sessoli, W. Wernsdorfer, Science 284, 133 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    F. Delgado, J. Fernández-Rossier, Phys. Rev. Lett. 108, 196602 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F. Delgado, S. Loth, M. Zielinski, J. Fernández-Rossier, EPL 109, 57001 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    J. Oberg et al., Nat. Nanotech. 9, 64 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    F. Delgado, C.F. Hirjibehedin, J. Fernández-Rossier, Surf. Sci. 630, 337 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    A.F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C.P. Lutz, C.F. Hirjibehedin, A.J. Heinrich, Nat. Phys. 4, 847 (2008)CrossRefGoogle Scholar
  20. 20.
    P. Jacobson, T. Herden, M. Muenks, G. Laskin, O. Brovko, V. Stepanyuk, M. Ternes, K. Kern, Nat. Comm. 6, 8536 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    J. Fernández-Rossier, Phys. Rev. Lett. 102, 256802 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    R. Žitko, Th. Pruschke, New. J. Phys. 12, 063040 (2010)CrossRefGoogle Scholar
  23. 23.
    R. Žitko, R. Peters, Th. Pruschke, Phys. Rev. B 78, 224404 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    A. Hurley, N. Baadji, S. Sanvito, Phys. Rev. B 84, 115435 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Ternes, New J. Phys. 17, 063016 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ferrón, J.L. Lado, J. Fernández-Rossier, Phys. Rev. B 92 174407 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S.K. Panda, I. Di Marco, O. Grånäs, O. Eriksson, J. Fransson, Phys. Rev. B 93, 140101 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)Google Scholar
  29. 29.
    O. Újsághy, J. Kroha, L. Szunyogh, A. Zawadowski, Phys. Rev. Lett. 85, 2557 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    B. Surer, M. Troyer, Ph. Werner, T. O. Wehling, A.M. Läuchli, A. Wilhelm, A.I. Lichtenstein, Phys. Rev. B 85, 085114 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    D. Jacob, J. Phys.: Condens. Matter 27, 245606 (2015)ADSGoogle Scholar
  32. 32.
    T. Pruschke, N. Grewe, Z. Phys. B 74, 439 (1989)ADSCrossRefGoogle Scholar
  33. 33.
    K. Haule, S. Kirchner, J. Kroha, P. Wölfle, Phys. Rev. B 64, 155111 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    K. Haule, C.H. Yee, K. Kim, Phys. Rev. B 81, 195107 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    T.A. Costi, J. Kroha, P. Wölfle, Phys. Rev. B 53, 1850 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    N. Grewe, S. Schmitt, T. Jabben, F.B. Anders, J. Phys.: Condens. Matter 20, 365217 (2008)Google Scholar
  37. 37.
    R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    A. Rüegg, E. Gull, G. A. Fiete, A. J. Millis, Phys. Rev. B 87, 075124 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    D. Jacob, M. Soriano, J. J. Palacios, Phys. Rev. B 88, 134417 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    S. Karan, D. Jacob, M. Karolak, C. Hamann, Y. Wang, A. Weismann, A.I. Lichtenstein, R. Berndt, Phys. Rev. Lett. 115, 016802 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    C. Romeike, M.R. Wegewijs, W. Hofstetter, H. Schoeller, Phys. Rev. Lett. 97, 206601 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    A.S. Zyazin, J.W.G. van den Berg, E.A. Osorio, H.S.J. van der Zant, N.P. Konstantinidis, M. Leijnse, M.R. Wegewijs, F. May, W. Hofstetter, C. Danieli, A. Cornia, Nano Lett. 10, 3307 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    R. Žitko, O. Bodensiek, Th. Pruschke, Phys. Rev. B 83, 054512 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    R. Korytár, N. Lorente, J.-P. Gauyacq, Phys. Rev. B 85, 125434 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    T.A. Costi, A.C. Hewson, V. Zlatić, J. Phys.: Condens. Matter 6, 2519 (1994)ADSGoogle Scholar
  46. 46.
    K. von Bergmann, M. Ternes, S. Loth, C.P. Lutz, A.J. Heinrich, Phys. Rev. Lett. 114, 076601 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    D.M. Newns, N. Read, J. Phys. C 16, 3273 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    A.A. Abrikosov, Physica 2, 21 (1965)Google Scholar
  49. 49.
    P. Coleman, Phys. Rev. B 29, 3035 (1984)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Max-Planck-Institut für MikrostrukturphysikHalleGermany
  2. 2.International Iberian Nanotechnology Laboratory (INL)BragaPortugal
  3. 3.Departamento de Física Aplicada, Universidad de AlicanteSan Vicente del RaspeigSpain

Personalised recommendations