Skip to main content
Log in

The impact of the dopants on the formation of conductive path in titanium dioxide: ab initio calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ab initio calculations are performed about the dependent characteristics of the conductive path on Ti/Cu/Zr interstitials and oxygen vacancies in rutile-type titanium dioxide. It is found that eight oxygen vacancies in two columns around five Ti-ions could lead to a conductive path. Besides, the conductive path will occur when additional four oxygen vacancies exist at the third column in ⟨ 110 ⟩ direction rather than on (110) facet. Oxygen vacancies at the third and fourth columns on (110) facet are considered and lead to a conductive path. Furthermore, one or three metal interstitials, such as Ti, Cu or Zr, are doped in titanium dioxide with three columns of oxygen vacancies on (110) facet, respectively. The conductive path is only found in the structure above with three Ti interstitials. We conclude that more Ti interstitials doping in reduced TiO2 benefit the formation of stable conductive path in resistive random access memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  2. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  3. S. Ambrogio, S. Balatti, S. Choi, D. Ielmini, Adv. Mater. 26, 3885 (2014)

    Article  Google Scholar 

  4. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016)

    Article  ADS  Google Scholar 

  5. S.H. Jeon, B.H. Park, J. Lee, B. Lee, S. Han, Appl. Phys. Lett. 89, 042904 (2006)

    Article  ADS  Google Scholar 

  6. H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 96, 123502 (2010)

    Article  ADS  Google Scholar 

  7. R.J. Bondi, M.P. Desjarlais, A.P. Thompson, G.L. Brennecka, M.J. Marinella, J. Appl. Phys. 114, 203701 (2013)

    Article  ADS  Google Scholar 

  8. S. Clima, B. Govoreanu, M. Jurczak, G. Pourtois, Microelectron. Eng. 120, 13 (2014)

    Article  Google Scholar 

  9. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, Adv. Mater. 24, 1844 (2012)

    Article  Google Scholar 

  10. L. Yang, C. Kuegeler, K. Szot, A. Ruediger, R. Waser, Appl. Phys. Lett. 95, 013109 (2009)

    Article  ADS  Google Scholar 

  11. T. Gu, T. Tada, S. Watanabe, ACS Nano 4, 6477 (2010)

    Article  Google Scholar 

  12. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  13. D.S. Jeong, H. Schroeder, U. Breuer, R. Waser, J. Appl. Phys. 104, 123716 (2008)

    Article  ADS  Google Scholar 

  14. Q. Liu, C. Dou, Y. Wang, S. Long, W. Wang, M. Liu, M. Zhang, J. Chen, Appl. Phys. Lett. 95, 023501 (2009)

    Article  ADS  Google Scholar 

  15. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Adv. Mater. 19, 2232 (2007)

    Article  Google Scholar 

  16. H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 96, 123502 (2010)

    Article  ADS  Google Scholar 

  17. J.J. Huang, C.W. Kuo, W.C. Chang, T.H. Hou, Appl. Phys. Lett. 96, 262901 (2010)

    Article  ADS  Google Scholar 

  18. W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, IEEE Electron Device Lett. 29, 434 (2008)

    Article  ADS  Google Scholar 

  19. Q. Liu, S. Long, W. Wang, S. Tanachutiwat, Y. Li, Q. Wang, M. Zhang, Z. Huo, J. Chen, M. Liu, IEEE Electron Device Lett. 31, 1229 (2009)

    Article  Google Scholar 

  20. L. Li, W.S. Li, A.M. Ji, Z.O. Wang, C.Y. Zhu, L.J. Zhang, J.F. Yang, L.F. Mao, Eur. Phys. J. Appl. Phys. 70, 10103 (2015)

    Article  ADS  Google Scholar 

  21. H.Y. Kim, H.M. Lee, G. Henkelman, J. Am. Chem. Soc. 134, 1560 (2012)

    Article  Google Scholar 

  22. J.G. Chang, H.T. Chen, S.P. Ju, H.L. Chen, C.C. Hwang, Langmuir 26, 4813 (2010)

    Article  Google Scholar 

  23. H. Kusama, H. Orita, H. Sugihara, Langmuir 24, 4411 (2008)

    Article  Google Scholar 

  24. X.H. Yang, H.T. Fu, K. Wong, X.C. Jiang, A.B. Yu, Nanotechnology 24, 415601 (2013)

    Article  Google Scholar 

  25. Q. Liu, L. Li, Y. Li, Z. Gao, Z. Chen, J. Lu, J. Phys. Chem. C 116, 21556 (2012)

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. R.S. Mulliken, J. Chem. Phys. 23, 1833 (2004)

    Article  ADS  Google Scholar 

  29. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996)

    Article  ADS  Google Scholar 

  30. W.Y. Park, G.H. Kim, J.Y. Seok, K.M. Kim, S.J. Song, M.H. Lee, C.S. Hwang, Nanotechnology 21, 195201 (2010)

    Article  ADS  Google Scholar 

  31. J.J. Huang, C.W. Kuo, W.C. Chang, T.H. Hou, Appl. Phys. Lett. 96, 262901 (2010)

    Article  ADS  Google Scholar 

  32. K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, Y. Sugiyama, in IEEE Int. Electron. Devices Meet. Technol. Dig. (2007), p. 767

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Feng Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, WS., Yang, JF. et al. The impact of the dopants on the formation of conductive path in titanium dioxide: ab initio calculations. Eur. Phys. J. B 89, 265 (2016). https://doi.org/10.1140/epjb/e2016-70381-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70381-2

Keywords

Navigation