Skip to main content
Log in

Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We revisit the scaling behavior of the specific heat of the three-dimensional random-field Ising model with a Gaussian distribution of the disorder. Exact ground states of the model are obtained using graph-theoretical algorithms for different strengths 𝒩 = 268 3 spins. By numerically differentiating the bond energy with respect to h, a specific-heat-like quantity is obtained whose maximum is found to converge to a constant in the thermodynamic limit. Compared to a previous study following the same approach, we have studied here much larger system sizes with an increased statistical accuracy. We discuss the relevance of our results under the prism of a modified Rushbrooke inequality for the case of a saturating specific heat. Finally, as a byproduct of our analysis, we provide high-accuracy estimates of the critical field h c = 2.279(7) and the critical exponent of the correlation exponent ν = 1.37(1), in excellent agreement to the most recent computations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Imry, S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975)

    Article  ADS  Google Scholar 

  2. A. Aharony, Y. Imry, S.-K. Ma, Phys. Rev. Lett. 37, 1364 (1976)

    Article  ADS  Google Scholar 

  3. A.P. Young, J. Phys.: Condens. Matter 10, L257 (1977)

    Google Scholar 

  4. S. Fishman, A. Aharony, J. Phys.: Condens. Matter 12, L729 (1979)

    Google Scholar 

  5. G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)

    Article  ADS  Google Scholar 

  6. J.L. Cardy, Phys. Rev. B 29, 505 (1984)

    Article  ADS  Google Scholar 

  7. J.Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984)

    Article  ADS  Google Scholar 

  8. M. Schwartz, A. Soffer, Phys. Rev. Lett. 55, 2499 (1985)

    Article  ADS  Google Scholar 

  9. M. Schwartz, A. Soffer, Phys. Rev. B 33, 2059 (1986)

    Article  ADS  Google Scholar 

  10. M. Schwartz, J. Phys.: Condens. Matter 18, 135 (1985)

    Google Scholar 

  11. M. Schwartz, M. Gofman, T. Nattermann, Physica A 178, 6 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Schwartz, Europhys. Lett. 15, 777 (1994)

    Article  ADS  Google Scholar 

  13. M. Gofman, J. Adler, A. Aharony, A.B. Harris, M. Schwartz, Phys. Rev. Lett. 71, 1569 (1993)

    Article  ADS  Google Scholar 

  14. J. Esser, U. Nowak, Phys. Rev. B 55, 5866 (1997)

    Article  ADS  Google Scholar 

  15. W.C. Barber, D.P. Belanger, J. Magn. Magn. Mater. 226, 545 (2001)

    Article  ADS  Google Scholar 

  16. D.P. Belanger, A.P. Young, J. Magn. Magn. Mater. 100, 272 (1991)

    Article  ADS  Google Scholar 

  17. H. Rieger, in Annual Reviews of Computational Physics II, edited by D. Stauffer (World Scientific, Singapore 1995), pp. 295–341

  18. D.P. Belanger, T. Nattermann, in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, 1998)

  19. D.P. Belanger, A.R. King, V. Jaccarino, J.L. Cardy, Phys. Rev. B 28, 2522 (1983)

    Article  ADS  Google Scholar 

  20. D.P. Belanger, Z. Slanič, J. Magn. Magn. Mater. 186, 65 (1998)

    Article  ADS  Google Scholar 

  21. R.L.C. Vink, K. Binder, H. Löwen, Phys. Rev. Lett. 97, 230603 (2006)

    Article  ADS  Google Scholar 

  22. J. Villain, Phys. Rev. Lett. 52, 1543 (1984)

    Article  ADS  Google Scholar 

  23. J. Villain, J. Physique 46, 1843 (1985)

    Article  Google Scholar 

  24. A.J. Bray, M.A. Moore, J. Phys.: Condens. Matter 18, L927 (1985)

    MathSciNet  Google Scholar 

  25. D.S. Fisher, Phys. Rev. Lett. 56, 416 (1986)

    Article  ADS  Google Scholar 

  26. A.N. Berker, S.R. McKay, Phys. Rev. B 33, 4712 (1986)

    Article  ADS  Google Scholar 

  27. J. Bricmont, A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.E.J. Newman, B.W. Roberts, G.T. Barkema, J.P. Sethna, Phys. Rev. B 48, 16533 (1993)

    Article  ADS  Google Scholar 

  29. J. Machta, M.E.J. Newman, L.B. Chayes, Phys. Rev. E 62, 8782 (2000)

    Article  ADS  Google Scholar 

  30. M.E.J. Newman, G.T. Barkema, Phys. Rev. E 53, 393 (1996)

    Article  ADS  Google Scholar 

  31. M. Itakura, Phys. Rev. B 64, 012415 (2001)

    Article  ADS  Google Scholar 

  32. N.G. Fytas, A. Malakis, Eur. Phys. J. B 61, 111 (2008)

    Article  ADS  Google Scholar 

  33. A. Aharony, Phys. Rev. B 18, 3318 (1978)

    Article  ADS  Google Scholar 

  34. A. Aharony, Phys. Rev. B 18, 3328 (1978)

    Article  ADS  Google Scholar 

  35. T. Schneider, E. Pytte, Phys. Rev. B 15, 1519 (1977)

    Article  ADS  Google Scholar 

  36. D. Andelman, Phys. Rev. B 27, 3079 (1983)

    Article  ADS  Google Scholar 

  37. N.G. Fytas, V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013)

    Article  ADS  Google Scholar 

  38. A.A. Middleton, D.S. Fisher, Phys. Rev. B 65, 134411 (2002)

    Article  ADS  Google Scholar 

  39. A.K. Hartmann, A.P. Young, Phys. Rev. B 64, 180404 (2001)

    Article  ADS  Google Scholar 

  40. P.E. Theodorakis, I. Georgiou, N.G. Fytas, Phys. Rev. E 87, 032119 (2013)

    Article  ADS  Google Scholar 

  41. P.E. Theodorakis, N.G. Fytas, Condens. Matter Phys. 17, 43003 (2014)

    Article  Google Scholar 

  42. N.G. Fytas, P.E. Theodorakis, I. Georgiou, I. Lelidis, Eur. Phys. J. B 86, 268 (2013)

    Article  ADS  Google Scholar 

  43. A.K. Hartmann, K.D. Usadel, Physica A 214, 141 (1995)

    Article  ADS  Google Scholar 

  44. A.K. Hartmann, Physica A 248, 1 (1998)

    Article  ADS  Google Scholar 

  45. S. Bastea, P.M. Duxbury, Phys. Rev. E 58, 4261 (1998)

    Article  ADS  Google Scholar 

  46. S. Bastea, Phys. Rev. E 58, 7978 (1998)

    Article  ADS  Google Scholar 

  47. S. Bastea, P.M. Duxbury, Phys. Rev. E 60, 4941 (1999)

    Article  ADS  Google Scholar 

  48. A.T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986)

    Article  ADS  Google Scholar 

  49. A.K. Hartmann, U. Nowak, Eur. Phys. J. B 7, 105 (1999)

    Article  ADS  Google Scholar 

  50. A.K. Hartmann, Phys. Rev. B 65, 174427 (2002)

    Article  ADS  Google Scholar 

  51. E.T. Seppälä, M.J. Alava, Phys. Rev. E 63, 066109 (2001)

    Article  ADS  Google Scholar 

  52. E.T. Seppälä, M.J. Alava, P.M. Duxbury, Phys. Rev. E 63, 066110 (2001)

    Article  ADS  Google Scholar 

  53. E.T. Seppälä, A.M. Pulkkinen, M.J. Alava, Phys. Rev. B 66, 144403 (2002)

    Article  ADS  Google Scholar 

  54. A.A. Middleton, Phys. Rev. Lett. 88, 017202 (2002)

    Article  ADS  Google Scholar 

  55. A.A. Middleton, arXiv:cond-mat/0208182 (2002)

  56. J.H. Meinke, A.A. Middleton, arXiv:cond-mat/0502471 (2005)

  57. D.C. Hambrick, J.H. Meinke, A.A. Middleton, arXiv:cond-mat/0501269 (2005)

  58. I. Dukovski, J. Machta, Phys. Rev. B 67, 014413 (2003)

    Article  ADS  Google Scholar 

  59. M.J. Alava, P.M. Duxbury, C.F. Moukarzel, H. Rieger, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, San Diego, 2001), Vol. 18

  60. M. Zumsande, M.J. Alava, A.K. Hartmann, J. Stat. Mech.: Theor. Exp. 2008, P02012 (2008)

    Article  Google Scholar 

  61. G.P. Shrivastav, S. Krishnamoorthy, V. Banerjee, S. Puri, Europhys. Lett. 96, 36003 (2011)

    Article  ADS  Google Scholar 

  62. B. Ahrens, A.K. Hartmann, Phys. Rev. B 83, 014205 (2011)

    Article  ADS  Google Scholar 

  63. B. Ahrens, A.K. Hartmann, Phys. Rev. B 84, 144202 (2011)

    Article  ADS  Google Scholar 

  64. B. Ahrens, A.K. Hartmann, Phys. Rev. B 85, 224421 (2012)

    Article  ADS  Google Scholar 

  65. J.D. Stevenson, M. Weigel, Europhys. Lett. 95, 40001 (2011)

    Article  ADS  Google Scholar 

  66. J.D. Stevenson, M. Weigel, Comput. Phys. Commun. 182, 1879 (2011)

    Article  ADS  Google Scholar 

  67. N.G. Fytas, P.E. Theodorakis, I. Georgiou, Eur. Phys. J. B 85, 349 (2012)

    Article  ADS  Google Scholar 

  68. A.K. Hartmann, H. Rieger, Optimization Algorithms in Physics (Wiley-VCH, Berlin 2004)

  69. A.K. Hartmann, M. Weigt, Phase Transitions in Combinatorial Optimization Problems (Wiley-VCH, Berlin 2005)

  70. J.-C. Anglés d’Auriac, M. Preissmann, R. Rammal, J. Phys. Lett. 46, L173 (1985)

    Article  Google Scholar 

  71. T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction To Algorithms (MIT Press, Cambridge, MA, 1990)

  72. C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994)

  73. A.V. Goldberg, R.E. Tarjan, J. Assoc. Comput. Mach. 35, 921 (1988)

    Article  MathSciNet  Google Scholar 

  74. B.V. Cherkassky, A.V. Goldberg, Algorithmica 19, 390 (1997)

    Article  MathSciNet  Google Scholar 

  75. G. Parisi, N. Sourlas, Phys. Rev. Lett. 89, 257204 (2002)

    Article  ADS  Google Scholar 

  76. G. Parisi, M. Picco, N. Sourlas, Europhys. Lett. 66 465 (2004)

    Article  ADS  Google Scholar 

  77. A. Malakis, N.G. Fytas, Phys. Rev. E 73, 016109 (2006)

    Article  ADS  Google Scholar 

  78. U. Nowak, K.D. Usadel, J. Esser, Physica A 250, 1 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos G. Fytas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fytas, N., Theodorakis, P. & Hartmann, A. Revisiting the scaling of the specific heat of the three-dimensional random-field Ising model. Eur. Phys. J. B 89, 200 (2016). https://doi.org/10.1140/epjb/e2016-70364-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70364-3

Keywords

Navigation