Skip to main content
Log in

Chaotic delocalization of two interacting particles in the classical Harper model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. Harper, Proc. Phys. Soc. London Sect. A 68, 874 (1955)

    Article  ADS  Google Scholar 

  2. M.Y. Azbel, Sov. Phys. J. Exp. Theor. Phys. 19, 634 (1964)

    Google Scholar 

  3. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  4. S. Aubry, G. André, Ann. Israel Phys. Soc. 3, 133 (1980)

    Google Scholar 

  5. J.B. Sokoloff, Phys. Rep. 126, 189 (1985)

    Article  ADS  Google Scholar 

  6. S.Y. Jitomirskaya, Ann. Math. 150, 1159 (1999)

    Article  MathSciNet  Google Scholar 

  7. J. Bourgain, S. Jitomirskaya, Invent. Math. 148, 453 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Avila, S. Jitomirskaya, C.A. Marx, Ann. Math. arXiv:1602.05111v1 [math-ph] (2016)

  9. T. Geisel, R. Ketzmerick, G. Petschel, Phys. Rev. Lett. 66, 1651 (1991)

    Article  ADS  Google Scholar 

  10. M. Wilkinson, E.J. Austin, Phys. Rev. B 50, 1420 (1994)

    Article  ADS  Google Scholar 

  11. D.L. Shepelyansky, Phys. Rev. B 54, 14896 (1996)

    Article  ADS  Google Scholar 

  12. A. Barelli, J. Bellissard, Ph. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 77, 4752 (1996)

    Article  ADS  Google Scholar 

  13. G. Dufour, G. Orso, Phys. Rev. Lett. 109, 155306 (2012)

    Article  ADS  Google Scholar 

  14. D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994)

    Article  ADS  Google Scholar 

  15. Y. Imry, Europhys. Lett. 30, 405 (1995)

    Article  ADS  Google Scholar 

  16. D. Weinmann, A. Muller-Groeling, J.-L. Pichard, K. Frahm, Phys. Rev. Lett. 75, 1598 (1995)

    Article  ADS  Google Scholar 

  17. K. Frahm, A. Muller-Groeling, J.-L. Pichard, D. Weinmann, Europhys. Lett. 31, 169 (1995)

    Article  ADS  Google Scholar 

  18. F. von Oppen, T. Wetting, J. Muller, Phys. Rev. Lett. 76, 491 (1996)

    Article  ADS  Google Scholar 

  19. K.M. Frahm, Eur. Phys. J. B 10, 371 (1999)

    Article  ADS  Google Scholar 

  20. K.M. Frahm, Eur. Phys. J. B 89, 115 (2016)

    Article  ADS  Google Scholar 

  21. F. Borgonovi, D.L. Shepelyansky, J. Phys. I France 6, 287 (1996)

    Article  Google Scholar 

  22. D.L. Shepelyansky, Phys. Rev. B 61, 4588 (2000)

    Article  ADS  Google Scholar 

  23. J. Lages, D.L. Shepelyansky, Eur. Phys. J. B 21, 129 (2001)

    Article  ADS  Google Scholar 

  24. S. Flach, M. Ivanchenko, R. Khomeriki, Europhys. Lett. 98, 66002 (2012)

    Article  ADS  Google Scholar 

  25. K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 88, 337 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. K.M. Frahm, D.L. Shepelyansky, Eur. Phys. J. B 89, 8 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  28. E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, G. Modugno, Phys. Rev. Lett. 106, 230403 (2011)

    Article  ADS  Google Scholar 

  29. M. Schreiber, S.S. Hodgman, P. Bordia, H. Luschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. P. Bordia, H.K. Luschen, S.S. Hodgman, M. Schreiber, I. Bloch, U. Schneider, Phys. Rev. Lett. 116, 140401 (2016)

    Article  ADS  Google Scholar 

  31. V.L. Pokrovsky, A.L. Talapov, Theory of Incommensurate Crystals (Harwood, London, 1984)

  32. G. Gruner, Density Waves in Solids (Addison-Wesley Publ. Company, New York, 1994)

  33. S.A. Brazovskii, Ferroelectricity and charge ordering in quasi-1D organic conductors, in The Physics of Organic Superconductors and Conductors, edited by A. Lebed (Springer-Verlag, Berlin, 2008), p. 313

  34. V.L. Alperovich, B.A. Tkachenko, O.A. Tkachenko, N.T. Moshegov, A.I. Toropov, A.S. Yaroshevich, J. Exp. Theor. Phys. Lett. 70, 117 (1999)

    Article  Google Scholar 

  35. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics (Springer, Berlin, 1992)

  37. R. Lima, D.L. Shepelyansky, Phys. Rev. Lett. 67, 1377 (1991)

    Article  ADS  Google Scholar 

  38. R. Ketzmerick, K. Kruse, T. Geisel, Physica D 131, 247 (1999)

    Article  ADS  Google Scholar 

  39. T. Prosen, I. I. Satija, N. Shah, Phys. Rev. Lett. 87, 066601 (2001)

    Article  ADS  Google Scholar 

  40. R. Artuso, Scholarpedia 6, 10462 (2011)

    Article  ADS  Google Scholar 

  41. P. Jurcevic, P. Hauke, C. Maier, C. Hempel, B.P. Lanyon, R. Blatt, C.F. Roos, Phys. Rev. Lett. 115, 100501 (2015)

    Article  ADS  Google Scholar 

  42. A. Bylinskii, D. Gangloff, V. Vuletic, Science 348, 1115 (2015)

    Article  ADS  Google Scholar 

  43. A. Bylinskii, D. Gangloff, I. Counts, V. Vuletic, Nat. Mater., DOI:10.1038/nmat4601 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima L. Shepelyansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelyansky, D. Chaotic delocalization of two interacting particles in the classical Harper model. Eur. Phys. J. B 89, 157 (2016). https://doi.org/10.1140/epjb/e2016-70225-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70225-1

Keywords

Navigation