Maximum information entropy principle and the interpretation of probabilities in statistical mechanics − a short review

Topical Review

Abstract

In this paper an alternative approach to statistical mechanics based on the maximum information entropy principle (MaxEnt) is examined, specifically its close relation with the Gibbs method of ensembles. It is shown that the MaxEnt formalism is the logical extension of the Gibbs formalism of equilibrium statistical mechanics that is entirely independent of the frequentist interpretation of probabilities only as factual (i.e. experimentally verifiable) properties of the real world. Furthermore, we show that, consistently with the law of large numbers, the relative frequencies of the ensemble of systems prepared under identical conditions (i.e. identical constraints) actually correspond to the MaxEnt probabilites in the limit of a large number of systems in the ensemble. This result implies that the probabilities in statistical mechanics can be interpreted, independently of the frequency interpretation, on the basis of the maximum information entropy principle.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.T. Jaynes, Predictive statistical mechanics, in Frontiers of Nonequilibrium Statistical Physics, edited by G.T. Moore, M.O. Scully (Plenum Press, New York, 1986), pp. 33−56.Google Scholar
  2. 2.
    W. Feller, An Introduction to Probability Theory and Its Applications (John Wiley and Sons, New York, 1961)Google Scholar
  3. 3.
    Law of large numbers, in Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/
  4. 4.
    O. Penrose, Foundations of Statistical Mechanics (Pergamon Press, Oxford, 1970)Google Scholar
  5. 5.
    I. Farquhar, Ergodic Theory in Statistical Mechanics (Wiley, New York, 1964)Google Scholar
  6. 6.
    J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics (Cambridge University Press, Cambridge, 1999)Google Scholar
  7. 7.
    E.T. Jaynes, Where do we stand on maximum entropy? In The Maximum Entropy Formalism, edited by R.D. Levine, M. Tribus (MIT Press, Cambridge, 1979), pp. 15−118Google Scholar
  8. 8.
    J.W. Gibbs, Elementary Principles in Statistical Mechanics (Yale University Press, New Haven, 1902)Google Scholar
  9. 9.
    E.T. Jaynes, Am. J. Phys. 33, 391 (1965)ADSCrossRefGoogle Scholar
  10. 10.
    E.T. Jaynes, Macroscopic prediction, in Complex Systems Operational Approaches in Neurobiology, Physics, and Computers, edited by H. Haken (Springer, Berlin, 1985), pp. 254−269.Google Scholar
  11. 11.
    E.T. Jaynes, The second law as physical fact and as human inference, Unpublished manuscript (1990), http://bayes.wustl.edu/etj/node2.html
  12. 12.
    C.E. Shannon, Bell Syst. Tech. J. 27, 379, 623 (1948). Reprinted in The Mathematical Theory of Communication, edited by C.E. Shannon, W. Weaver (University of Illinois Press, Urbana, 1949)Google Scholar
  13. 13.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    W.T. Grandy, Entropy and the Time Evolution of Macroscopic Systems (Oxford University Press, Oxford, 2008)Google Scholar
  16. 16.
    W.T. Grandy, Found. Phys. 34, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    E.T. Jaynes, in Probability Theory: The Logic of Science, edited by G.L. Bretthorst (Cambridge University Press, Cambridge, 2003)Google Scholar
  18. 18.
    D. Kuić, Foundational principles of predictive statistical mechanics as the basis for theory of irreversibility, Ph.D. thesis (in Croatian) (2013), http://digre.pmf.unizg.hr/22/
  19. 19.
    W.T. Grandy, Found. Phys. 34, 21 (2004)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    W.T. Grandy, Found. Phys. 34, 771 (2004)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Campisi, P. Talkner, P. Hanggi, Phys. Rev. Lett. 102, 210401 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    E.T. Jaynes, Foundations of probability theory and statistical mechanics, in Delaware Seminar in the Foundations of Physics, edited by M. Bunge (Springer, Berlin, 1967), pp. 77−101Google Scholar
  25. 25.
    D. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1: Basic Concepts, Kinetic Theory (Akademie Verlag, Berlin, 1996)Google Scholar
  26. 26.
    D. Zubarev, V. Morozov, G. Ropke, in Statistical Mechanics of Nonequilibrium Processes, Vol. 2: Relaxation and Hydrodynamic Processes (Akademie Verlag, Berlin, 1997)Google Scholar
  27. 27.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley and Sons, New York, 1975)Google Scholar
  28. 28.
    D. Kuić, P. Zupanovic, D. Juretic, Found. Phys. 42, 319 (2012)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    D. Kuić, Predictive statistical mechanics and macroscopic time evolution. A model for closed Hamiltonian systems, arXiv:1506.02622 (2015)
  30. 30.
    D. Kuić, Predictive statistical mechanics and macroscopic time evolution. Hydrodynamics and entropy production. Accepted for publication in Found. Phys, arXiv:1506.02625 (2015)

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of Split, Faculty of ScienceSplitCroatia

Personalised recommendations