Skip to main content
Log in

Complex solitary waves and soliton trains in KdV and mKdV equations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We demonstrate the existence of complex solitary wave and periodic solutions of the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (mKdV) equations. The solutions of the KdV (mKdV) equation appear in complex-conjugate pairs and are even (odd) under the simultaneous actions of parity (𝓟) and time-reversal (𝓣) operations. The corresponding localized solitons are hydrodynamic analogs of Bloch soliton in magnetic system, with asymptotically vanishing intensity. The 𝓟𝓣-odd complex soliton solution is shown to be iso-spectrally connected to the fundamental sech2 solution through supersymmetry. Physically, these complex solutions are analogous to the experimentally observed grey solitons of non-liner Schödinger equation, governing the dynamics of shallow water waves and hence may also find physical verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Scott-Russel, in Rep. 14th Meeting British Assoc Adv. Sci. (John Murray, London, 1844), p. 311

  2. D.J. Korteweg, de Vries, Phil. Mag. 39, 422 (1895)

    Article  Google Scholar 

  3. P.G. Drazin, R.S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989)

  4. R.M. Miura, C.S. Gardner, M.D. Kruskal, J. Math. Phys. 9, 1204 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.D. Lax, Comm. Pure Appl. Math. 21, 467 (1968)

    Article  MathSciNet  Google Scholar 

  6. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer-Verlag, New York, 1977)

  7. I. Kay, H.E. Moses, J. Appl. Phys. 27, 1503 (1956)

    Article  ADS  Google Scholar 

  8. V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaeveskii, Theory of Solitons: The Inverse Scattering Method (Plenum, New York, 1984)

  9. S.V. Manakov, Zh. Eksp. Teor. Fiz. 67, 543 (1974)

    ADS  MathSciNet  Google Scholar 

  10. V.E. Zakharov, A.B. Shabat, Func. Anal. Appl. 8, 226 (1974)

    Article  Google Scholar 

  11. R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)

    Article  ADS  Google Scholar 

  12. C. Rogers, W.K. Schief, Bäcklund and Darboux Transformations (Cambridge University Press, 2002)

  13. Y. Jiang, B. Tian, W.-J. Liu, M. Li, P. Wang, K. Sun, J. Math. Phys. 51, 093519 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. X.-Y. Gao, J. Math. Phys. 56, 014101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. X.-Y. Gao, Ocean Eng. 96, 245 (2015)

    Article  Google Scholar 

  16. R.M. Miura, J. Math. Phys. 9, 1202 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  17. K. Konno, M. Wadati, Prog. Theor. Phys. 53, 1652 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.H. Khater, O.H. El-Kakaawy, D.K. Callebaut, Phys. Scr. 58, 545 (1998)

    Article  ADS  Google Scholar 

  19. X.-Y. Gao, Europhys. Lett. 110, 15002 (2015)

    Article  ADS  Google Scholar 

  20. H. Ono, J. Phys. Soc. Jpn 61, 4336 (1992)

    Article  ADS  Google Scholar 

  21. K.R. Helfrich, W.K. Melville, J.W. Miles, J. Fluid Mech. 149, 305 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Chabchoub, N.P. Hoffman, N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)

    Article  ADS  Google Scholar 

  23. M. Akbari-Moghnjoughi, Phys. Plasmas 22, 032307 (2015)

    Article  ADS  Google Scholar 

  24. V. Ziegler, J. Dinkel, C. Setzer, K.E. Lonngren, Chaos Solitons Fractals 12, 1719 (2001)

    Article  ADS  Google Scholar 

  25. K.E. Lonngren, Opt. Quantum Electron. 30, 615 (1998)

    Article  Google Scholar 

  26. S. Watanabe, J. Phys. Soc. Jpn 53, 950 (1984)

    Article  ADS  Google Scholar 

  27. M. Tajiri, K. Nishihara, J. Phys. Soc. Jpn 54, 572 (2001)

    Article  ADS  Google Scholar 

  28. A. Khare, A. Saxena, Phys. Lett. A 377, 2761 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Khare, A. Saxena, J. Math. Phys. 55, 032701 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. V.G. Bar’yakhtar, M.V. Chetkin, B.A. Ivanov, S.N. Gadetskii, Dynamics of Topological Magnetic Soliton-Experiment and Theory (Springer-Verlag, Berlin, 1994)

  31. M. Lakshmanan, Phys. Lett. A 61, 53 (1977)

    Article  ADS  Google Scholar 

  32. A.K. Mukhopadhayay, V.M. Vyas, P.K. Panigrahi, Eur. Phys. J. B 88, 188 (2015)

    Article  ADS  Google Scholar 

  33. A. Das, Integrable Model (World Scientific, Singapore, 1989)

  34. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  35. Z. Ahmed, Phys. Lett. A 282, 343 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Abhinav, P.K. Panigrahi, Ann. Phys. 325, 6 (2011)

    Google Scholar 

  37. C.N. Kumar, J. Phys. A 20, 5397 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  38. F. Cooper, A. Khare, U.P. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)

  39. Q. Wang. U.P. Sukhatme, W.-Y. Keung, T.D. Imbo, Mod. Phys. Lett. A 05, 525 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Bagchi, R. Roychoudhury, J. Phys. A 21, L195 (1988)

    Article  Google Scholar 

  41. B. Birnir, SIAM J. Appl. Math. 47, 4 (1987)

    Article  MathSciNet  Google Scholar 

  42. A. Das, L. Greenwood, Phys. Lett. B 678, 504 (2009) and references therein

    Article  ADS  MathSciNet  Google Scholar 

  43. V.G. Knizhnik, A.M. Polyakov, A.B. Zamolodchikov, Mod. Phys. Lett. A 3, 819 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.M. Polyakov, Int. J. Mod. Phys. A 5, 883 (1990)

    Article  MathSciNet  Google Scholar 

  45. J.-M. Lina, P.K. Panigrahi, Int. J. Mod. Phys. A 7, 27 (1992)

    MathSciNet  Google Scholar 

  46. Q. Wang, P.K. Panigrahi, U. Sukhatme, W.-Y. Keung, Nucl. Phys. B 344, 196 (1990) and references therein

    Article  ADS  MathSciNet  Google Scholar 

  47. K. Pradhan, P.K. Panigrahi, J. Phys. A 39, L343 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. W.-R. Sun, B. Tian, D.-Y. Liu, X.-Y. Xie, J. Phys. Soc. Jpn 84, 074003 (2015)

    Article  ADS  Google Scholar 

  49. B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Young, Nat. Phys. 10, 394 (2014)

    Article  Google Scholar 

  50. C.E. Reüter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  51. X.-Y. Xie, B. Tian, W.-R. Sun, M. Wang, Y.-P. Wang, Mod. Phys. Lett. B 29, 1550192 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Kumar Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modak, S., Singh, A. & Panigrahi, P. Complex solitary waves and soliton trains in KdV and mKdV equations. Eur. Phys. J. B 89, 149 (2016). https://doi.org/10.1140/epjb/e2016-70130-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70130-7

Keywords

Navigation