Skip to main content
Log in

Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fujisawa, T. Hayashi, R. Tomita, Y. Hirayama, Science 312, 1634 (2006)

    Article  ADS  Google Scholar 

  2. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley Sons, Chichester, 1999)

  3. O. Benson, C. Santori, M. Pelton, Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  4. F. Suárez, D. Granados, M.L. Dotor, J.M. Garcia, Nanotechnology 15, S126 (2004)

    Article  ADS  Google Scholar 

  5. H.S. Ling, S.Y. Wang, C.P. Lee, M.C. Lo, J. Appl. Phys. 105, 34504 (2009)

    Article  ADS  Google Scholar 

  6. S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Nature 420, 800 (2002)

    Article  ADS  Google Scholar 

  7. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    Article  ADS  Google Scholar 

  8. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoç, Phys. Rev. Lett. 56, 2748 (1986)

    Article  ADS  Google Scholar 

  9. D. Fröhlich, R. Wille, W. Schlapp, G. Weimann, Phys. Rev. Lett. 59, 1748 (1987)

    Article  ADS  Google Scholar 

  10. W.H. Knox, D.S. Chemla, D.A.B. Miller, J.B. Stark, S. Schmitt-Rink, Phys. Rev. Lett. 62, 1189 (1989)

    Article  ADS  Google Scholar 

  11. H. Hirori, K. Shinokita, M. Shirai, S. Tani, Y. Kadoya, K. Tanaka, in Conference on Lasers and Electro-Optics: Laser Science to Photonic Applications, CLEO (2011), Vol. 5951271

  12. S. Zhang, I. Zeylikovich, T. Gayen, R. Alfano, M. Tamargo, J. Vac. Sci. Technol. B 31, 03C120 (2013)

    Article  Google Scholar 

  13. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2001)

  14. A. Blais, R.-S. Huang, A. Wallraff, S.M. Gurvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  15. O.V. Kibis, G. Ya. Slepyan, S.A. Maksimenko, A. Hoffmann, Phys. Status Solidi B 249, 914 (2012)

    Article  ADS  Google Scholar 

  16. L. Lu, W. Xie, H. Hassanabadi, J. Lumin. 131, 2538 (2011)

    Article  Google Scholar 

  17. K. Köksal, M. Şahin, Eur. Phys. J. B 85, 333 (2012)

    Article  ADS  Google Scholar 

  18. M.G. Barseghyan, C.A. Duque, E.C. Niculescu A. Radu, Superlattices Microstruct. 66, 10 (2014)

    Article  ADS  Google Scholar 

  19. E.C. Niculescu, A. Radu, Eur. Phys. J. B 80, 73 (2011)

    Article  ADS  Google Scholar 

  20. D. Bejan, E.C. Niculescu, Phil. Mag. 96, 1131 (2016)

    Article  ADS  Google Scholar 

  21. E. Sadeghi, Superlattices Microstruct. 49, 91 (2011)

    Article  ADS  Google Scholar 

  22. D. Bejan, E.C. Niculescu, Physica E 75, 149 (2016)

    Article  ADS  Google Scholar 

  23. E. Assaid, E. Feddi, M. Khaidar, F. Dujardin, B. Stébé, Phys. Scr. 63 329 (2001)

    Article  ADS  Google Scholar 

  24. E.C. Niculescu, M. Cristea, Eur. Phys. J. B 84, 59 (2011)

    Article  ADS  Google Scholar 

  25. I. Erdogan, O. Akankan, H. Akbas, Superlattices Microstruct. 59, 13 (2013)

    Article  ADS  Google Scholar 

  26. Congxin Xia, Xiaoyang Chen, Shuyi Wei, Yu Jia, J. Appl. Phys. 113, 214310 (2013)

    Article  ADS  Google Scholar 

  27. F. Ungan, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, E. Kasapoglu, C.A. Duque, Superlattices Microstruct. 81, 26 (2015)

    Article  ADS  Google Scholar 

  28. J.R. Petta, A.C. Johnson, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 93, 186802 (2004)

    Article  ADS  Google Scholar 

  29. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  30. J. Gorman, D.G. Hasko, D.A. Williams, Phys. Rev. Lett. 95, 090502 (2005)

    Article  ADS  Google Scholar 

  31. S. Selstø, M. Førre, Phys. Rev. B 74, 195327 (2006)

    Article  ADS  Google Scholar 

  32. M. Førre, J.P. Hansen, V. Popsueva, A. Dubois, Phys. Rev. B 74, 165304 (2006)

    Article  ADS  Google Scholar 

  33. A. Fountoulakis, A.F. Terzis, E. Paspalakis, J. Appl. Phys. 106, 074305 (2009)

    Article  ADS  Google Scholar 

  34. A. Fountoulakis, E. Paspalakis, J. Appl. Phys. 113, 174301 (2013)

    Article  ADS  Google Scholar 

  35. E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)

    Article  ADS  Google Scholar 

  36. M. Gavrila, J.Z. Kaminski, Phys. Rev. Lett. 52, 613 (1984)

    Article  ADS  Google Scholar 

  37. M. Gavrila, in Fundamentals of laser interactions, Lecture Notes in Physics, edited by F. Ehlotzky (Springer, Berlin, 1985), Vol. 229

  38. M. Pont, N.R. Walet, M. Gavrila, C.W. McCurdy, Phys. Rev. Lett. 61, 939 (1988)

    Article  ADS  Google Scholar 

  39. B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, Q. Fanyao, E.F. Da Silva Jr., V.N. Freire, Phys. Rev. B 70, 035307 (2004)

    Article  ADS  Google Scholar 

  40. J.V. Lill, G.A. Parker, J.C. Light, Chem. Phys. Lett. 89, 483 (1982)

    Article  ADS  Google Scholar 

  41. J.C. Light, I.P. Hamilton, J.V. Lill, J. Chem. Phys. 82, 1400 (1985)

    Article  ADS  Google Scholar 

  42. D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982 (1992)

    Article  ADS  Google Scholar 

  43. S.E. Okan, I. Erdogan, H. Akbaş, Physica E 21, 91 (2004)

    Article  ADS  Google Scholar 

  44. C.M. Duque, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, J. Lumin. 143, 81 (2013)

    Article  Google Scholar 

  45. B. Szafran, F.M. Peeters, Phys. Rev. B 76, 195442 (2007)

    Article  ADS  Google Scholar 

  46. J.C. Martínez-Orozco, M.E. Mora-Ramos, C.A. Duque, Physica B 452, 82 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doina Bejan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejan, D., Niculescu, E. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field. Eur. Phys. J. B 89, 138 (2016). https://doi.org/10.1140/epjb/e2016-70115-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70115-6

Keywords

Navigation