Time-dependent density functional theory for charge-transfer dynamics: review of the causes of failure and success*

Colloquium
Part of the following topical collections:
  1. Topical issue: Ψk Volker Heine Young Investigator Award – 2015 Finalists

Abstract

The present study is an effort to unveil and characterize the failure and success of real-time Time-dependent density functional theory simulated charge transfer dynamics. To this aim, we study two distinct examples found in the literature: a dramatic failure is reported in [S. Raghunathan, M. Nest, J. Chem. Theor. Comput. 7, 2492 (2011)] whereas in [C.A. Rozzi et al., Nat. Commun. 4, 1602 (2013)] the simulations show good agreement with experiments. We find that the choice of Single Slater Determinant for the Kohn Sham initial state renders the simulation of charge transfer dynamics starting in the ground state very challenging. In contrast, starting the simulation in a photo-excited state facilitates the description and we show that even a simple functional can perform well. We formulate exact conditions to be satisfied by the exchange-correlation functional in order to keep the resonances of the system constant and relate the degree of their violation to the performance of a given functional approximation. We show that even the best possible ground state approximation to the exchange-correlation density functional violates the exact conditions, resulting in inaccurate dynamics.

References

  1. 1.
    F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    S. Neppl, E.R.C.A.L. Lemell, G.C. Wachter, E. Magerl, E.M. Bothschafter, M. Jobst, M. Hofstetter, U. Kleineberg, J.V. Barth, D. Menzel, J. Burgdorfer, P. Feulner, F. Krausz, R. Kienberger, Nature 517, 342 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M. Nest, T. Klamroth, P. Saalfrank, J. Chem. Phys. 122, 124102 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    O. Koch, W. Kreuzer, A. Scrinzi, Appl. Math. Comput. 173, 960 (2006)MathSciNetGoogle Scholar
  5. 5.
    D.J. Haxton, K.V. Lawler, C.W. McCurdy, Phys. Rev. A 86, 013406 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    T. Klamroth, Phys. Rev. B 68, 245421 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    P. Krause, T. Klamroth, P. Saalfrank, J. Chem. Phys. 127, 034107 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    S. Klinkusch, T. Klamroth, P. Saalfrank, Phys. Chem. Chem. Phys. 11, 3875 (2009)CrossRefGoogle Scholar
  9. 9.
    D. Hochstuhl, M. Bonitz, Phys. Rev. A 86, 053424 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. Bauch, L.K. Sørensen, L.B. Madsen, Phys. Rev. A 90, 062508 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Dutoi, L.S. Cederbaum, M. Wormit, J.H. Starcke, A. Dreuw, J. Chem. Phys. 132, 144302 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    N.V. Golubev, A.I. Kuleff, Phys. Rev. A 91, 051401 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E. Perfetto, G. Stefanucci, Phys. Rev. A 91, 033416 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Jornet-Somoza, J. Alberdi-Rodriguez, B.F. Milne, X. Andrade, M.A.L. Marques, F. Nogueira, M.J.T. Oliveira, J.J.P. Stewart, A. Rubio, Phys. Chem. Chem. Phys. 17, 26599 (2015)CrossRefGoogle Scholar
  15. 15.
    E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    M.A.L. Marques, N.T. Maitra, F.M.S. Nogueira, E.K.U. Gross, A. Rubio, in Fundamentals of time-dependent density functional theory (Springer Science & Business Media, 2012), Vol. 837Google Scholar
  17. 17.
    C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, 2011)Google Scholar
  18. 18.
    C.A. Rozzi et al., Nat. Commun. 4, 1602 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Shinohara, S. Sato, K. Yabana, J.I. Iwata, T. Otobe, G.F. Bertsch, J. Chem. Phys. 137, 22A527 (2012)Google Scholar
  20. 20.
    E. Penka Fowe, A.D. Bandrauk, Phys. Rev. A 84, 035402 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J. Olof Johansson, E. Bohl, G.G. Henderson, B. Mignolet, T.J.S. Dennis, F. Remacle, E.E.B. Campbell, J. Chem. Phys. 139, 084309 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    P. Wopperer, P. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    S. Raghunathan, M. Nest, J. Chem. Theor. Comput. 7, 2492 (2011)CrossRefGoogle Scholar
  24. 24.
    R. Ramakrishnan, M. Nest, Phys. Rev. A 85, 054501 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    R. Requist, O. Pankratov, Phys. Rev. A 81, 042519 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J.I. Fuks, P. Elliott, A. Rubio, N.T. Maitra, J. Phys. Chem. Lett. 4, 735 (2013)CrossRefGoogle Scholar
  27. 27.
    M.J.P. Hodgson, J.D. Ramsden, J.B.J. Chapman, P. Lillystone, R.W. Godby, Phys. Rev. B 88, 241102 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    J.I. Fuks, N.T. Maitra, Phys. Chem. Chem. Phys. 16, 14504 (2014)CrossRefGoogle Scholar
  29. 29.
    J.I. Fuks, N.T. Maitra, Phys. Rev. A 89, 062502 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    N.T. Maitra, J. Chem. Phys. 122, 234104 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    N.T. Maitra, D.G. Tempel, J. Chem. Phys. 125, 184111 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    J.I. Fuks, A. Rubio, N.T. Maitra, Phys. Rev. A 83, 042501 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    B.F. Habenicht, N.P. Tani, M.R. Provorse, C.M. Isborn, J. Chem. Phys. 141, 184112 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    S. Raghunathan, M. Nest, J. Chem. Theor. Comput. 8, 806 (2012)CrossRefGoogle Scholar
  35. 35.
    S.M. Falke, C.A. Rozzi, D. Brida, M. Maiuri, M. Amato, E.S. Sommer, A. DeSio, A.R. Rubio, G. Cerullo, E. Molinari, C. Lineau, Science 344, 1001 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    J.L. Alonso, X. Andrade, P. Echenique, F. Falceto, D. Prada-Gracia, A. Rubio, Phys. Rev. Lett. 101, 096403 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    P. Elliott, J.I. Fuks, A. Rubio, N.T. Maitra, Phys. Rev. Lett. 109, 266404 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    P. Hessler, N.T. Maitra, K. Burke, J. Chem. Phys. 117, 72 (2002)ADSCrossRefGoogle Scholar
  40. 40.
    M. Levy, Phys. Rev. A 26, 1200 (1982)ADSCrossRefGoogle Scholar
  41. 41.
    E.H. Lieb, Int. J. Quantum Chem. 24, 243 (1983)CrossRefGoogle Scholar
  42. 42.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    O. Gunnarsson, K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986)ADSCrossRefGoogle Scholar
  44. 44.
    K. Schönhammer, O. Gunnarsson, R.M. Noack, Phys. Rev. B 52, 2504 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    D.J. Carrascal, J. Ferrer, Phys. Rev. B 85, 045110 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    J.I. Fuks, M. Farzanehpour, I.V. Tokatly, H. Appel, S. Kurth, A. Rubio, Phys. Rev. A 88, 062512 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    F. Aryasetiawan, O. Gunnarsson, Phys. Rev. B 66, 165119 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    Y.H. Li, C.A. Ullrich, J. Chem. Phys. 129, 044105 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    M. Farzanehpour, I. Tokatly, Phys. Rev. B 86, 1 (2012)CrossRefGoogle Scholar
  51. 51.
    S. Raghunathan, M. Nest, J. Chem. Phys. 136, 064104 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    S. Raghunathan, M. Nest, J. Chem. Theor. Computat. 8, 806 (2012)CrossRefGoogle Scholar
  53. 53.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    D. Tannor, Introduction to quantum mechanics (University Science Books, 2007)Google Scholar
  55. 55.
    A. Brown, W.J. Meath, P. Tran, Phys. Rev. A 63, 013403 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    X. Andrade et al., J. Phys.: Condens. Matter 24, 233202 (2012)ADSMathSciNetGoogle Scholar
  57. 57.
    A. Castro, H. Appel, M. Oliveira, C.A. Rozzi, X. Andrade, F. Lorenzen, M.A.L. Marques, E.K.U. Gross, A. Rubio, Phys. Stat. Sol. B 243, 2465 (2006)ADSCrossRefGoogle Scholar
  58. 58.
    R.F.W. Bader, P.M. Beddall, P.E. Cade, J. Am. Chem. Soc. 93, 3095 (1971)CrossRefGoogle Scholar
  59. 59.
    T. Dimitrov, H. Appel, J.I. Fuks, A. Rubio, New J. Phys. 18, 083004 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    K. Yabana, T. Nakatsukasa, J.I. Iwata, G.F. Bertsch, Phys. Stat. Sol. B 243, 1121 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Fundamentals of time-dependent density functional theory, edited by M.A. Marques, N.T. Maitra, F.M. Nogueira, E.K. Gross, A. Rubio (Springer, 2012), Vol. 837, Chap. 4Google Scholar
  62. 62.
    J.I. Fuks, S. Nielsen, M. Ruggenthaler, N.T. Maitra, Phys. Chem. Chem. Phys. 18, 20976 (2016)CrossRefGoogle Scholar
  63. 63.
    P. Elliott, J.I. Fuks, A. Rubio, N.T. Maitra, Phys. Rev. Lett. 109, 266404 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    O. Gritsenko, E. Baerends, Phys. Rev. A 54, 1957 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    T.J.M. D.G. Tempel, N.T. Maitra, J. Chem. Theor. Computat. 5, 770 (2009)CrossRefGoogle Scholar
  66. 66.
    N. Helbig, I.V. Tokatly, A. Rubio, J. Chem. Phys. 131, 224105 (2009)ADSCrossRefGoogle Scholar
  67. 67.
    M. Thiele, S. Kummel, Phys. Chem. Chem. Phys. 11, 4436 (2009)CrossRefGoogle Scholar
  68. 68.
    N.T. Maitra, K. Burke, C. Woodward, Phys. Rev. Lett. 89, 023002 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    M. Ruggenthaler, D. Bauer, Phys. Rev. Lett. 102, 233001 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    J.I. Fuks, N. Helbig, I. Tokatly, A. Rubio, Phys. Rev. B 84, 075107 (2011)ADSCrossRefGoogle Scholar
  71. 71.
    J.I. Fuks, K. Luo, E.D. Sandoval, N.T. Maitra, Phys. Rev. Lett. 114, 183002 (2015)ADSCrossRefGoogle Scholar
  72. 72.
    R. Padmanaban, M. Nest, Chem. Phys. Lett. 463, 263 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    G. Giuliani, G. Vignale, Quantum theory of the electron liquid (Cambridge University Press, 2005)Google Scholar
  74. 74.
    K. Luo, J.I. Fuks, N.T. Maitra, J. Chem. Phys. 145, 044101 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    U. De Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, A. Rubio, ChemPhysChem 14, 1363 (2013)CrossRefGoogle Scholar
  76. 76.
    M.R. Provorse, B.F. Habenicht, C.M. Isborn, J. Chem. Theor. Computat. 11, 4791 (2015)CrossRefGoogle Scholar
  77. 77.
    M.J.T. Oliveira, B. Mignolet, T. Kus, T.A. Papadopoulos, M.J. Verstraete, J. Chem. Theory Comput. 11, 2221 (2015)CrossRefGoogle Scholar
  78. 78.
    S.E.B. Nielsen, M. Ruggenthaler, R. van Leeuwen, Europhys. Lett. 101, 33001 (2013)ADSCrossRefGoogle Scholar
  79. 79.
    N.T. Maitra, F. Zhang, R.J. Cave, K. Burke, J. Chem. Phys. 120, 5932 (2004)ADSCrossRefGoogle Scholar
  80. 80.
    R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999)ADSCrossRefGoogle Scholar
  81. 81.
    N.T. Maitra, K. Burke, Phys. Rev. A 63, 042501 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996)ADSCrossRefGoogle Scholar
  83. 83.
    O.V. Gritsenko, S.J.A. van Gisbergen, A. Goerling, E.J. Baerends, J. Chem. Phys. 113, 8478 (2000)ADSCrossRefGoogle Scholar
  84. 84.
    T. Grabo, M. Petersilka, E. Gross, J. Mol. Struct. Theochem 501-502, 353 (2000)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Physics and AstronomyHunter College and the Graduate Center of the City University of New YorkPark AvenueUSA

Personalised recommendations